10,879 research outputs found

    Sampled data systems passivity and discrete port-Hamiltonian systems

    Get PDF
    In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system first presented in [1][2] [3]. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for the implementation of a passive master/slave system on a digital transmission line with varying time delays and possible loss of packets (e.g., the Internet), and in the field of haptics, where the virtual environment should `feel¿ like a physical equivalent system

    Informational aspects of the haptic stimulation by the light for correction of the human functional state

    Get PDF
    Introduction. The study of the laws and principles of information processes in the biological systems of the human body in extreme forms of its activities and the development of the theory of medical information systems of such appointment, taking into account the status and trends of convergence of society, ecosystems and technology become very relevant. This state of affairs makes it possible to affirm that it is an actual scientific and applied problem of radical change of the existing paradigm of designing information systems. The purpose of the article is to specify the informational aspects of low intensity, haptic stimulation by the light, which is essential for correction of the functional state of an organism of the human being, who works in extreme conditions, to develop and study such methods and systems. Methods. Analyses of requirements, functions and systems for designing synthesis of information technologies and the control biotechnical system of correction of the functional state of an organism of the human, who works in extreme conditions. The theoretical and experimental dependences between the stimulation energy of light emission diode (LED) and the energy are transferred through the layered bio media design. Mathematical modelling and computational simulation. Comparison of these real and model data. Results. The base aspects requirements, functions and systems for designing synthesis of information technologies and the control biotechnical system of correction of the functional state of an organism of the human, who works in extreme conditions, low intensity, haptic stimulation by the light are defined. The methods for determining of intensity I0 of light emission diode, recursive expression , and formula for coefficient Cm , where M — quantity of bio media layers were developed. The bridges, which connects Maxwell’s phenomenological theory with the atomistic theory of matter and optics, were used. Computer simulation studies have confirmed the specification of requirements, functional and structural schemas of biotechnical system. Conclusions. Thanking to specification of requirements possibility-using recursive determining of the light flux intensity after every bio media layer was got. Under the effect of recurstion low computation complexity was caused. Information technology means (for automation optimal control) of the human state under external influences on the organism was developed. Further study to confirm statistical significance in representative samples of observations was opened

    Personalising Vibrotactile Displays through Perceptual Sensitivity Adjustment

    Get PDF
    Haptic displays are commonly limited to transmitting a discrete set of tactile motives. In this paper, we explore the transmission of real-valued information through vibrotactile displays. We simulate spatial continuity with three perceptual models commonly used to create phantom sensations: the linear, logarithmic and power model. We show that these generic models lead to limited decoding precision, and propose a method for model personalization adjusting to idiosyncratic and spatial variations in perceptual sensitivity. We evaluate this approach using two haptic display layouts: circular, worn around the wrist and the upper arm, and straight, worn along the forearm. Results of a user study measuring continuous value decoding precision show that users were able to decode continuous values with relatively high accuracy (4.4% mean error), circular layouts performed particularly well, and personalisation through sensitivity adjustment increased decoding precision

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure
    corecore