78 research outputs found

    Sequeval: A Framework to Assess and Benchmark Sequence-based Recommender Systems

    Get PDF
    In this paper, we present sequeval, a software tool capable of performing the offline evaluation of a recommender system designed to suggest a sequence of items. A sequence-based recommender is trained considering the sequences already available in the system and its purpose is to generate a personalized sequence starting from an initial seed. This tool automatically evaluates the sequence-based recommender considering a comprehensive set of eight different metrics adapted to the sequential scenario. sequeval has been developed following the best practices of software extensibility. For this reason, it is possible to easily integrate and evaluate novel recommendation techniques. sequeval is publicly available as an open source tool and it aims to become a focal point for the community to assess sequence-based recommender systems.Comment: REVEAL 2018 Workshop on Offline Evaluation for Recommender System

    Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking

    Full text link
    This paper proposes a new neural architecture for collaborative ranking with implicit feedback. Our model, LRML (\textit{Latent Relational Metric Learning}) is a novel metric learning approach for recommendation. More specifically, instead of simple push-pull mechanisms between user and item pairs, we propose to learn latent relations that describe each user item interaction. This helps to alleviate the potential geometric inflexibility of existing metric learing approaches. This enables not only better performance but also a greater extent of modeling capability, allowing our model to scale to a larger number of interactions. In order to do so, we employ a augmented memory module and learn to attend over these memory blocks to construct latent relations. The memory-based attention module is controlled by the user-item interaction, making the learned relation vector specific to each user-item pair. Hence, this can be interpreted as learning an exclusive and optimal relational translation for each user-item interaction. The proposed architecture demonstrates the state-of-the-art performance across multiple recommendation benchmarks. LRML outperforms other metric learning models by 6%7.5%6\%-7.5\% in terms of Hits@10 and nDCG@10 on large datasets such as Netflix and MovieLens20M. Moreover, qualitative studies also demonstrate evidence that our proposed model is able to infer and encode explicit sentiment, temporal and attribute information despite being only trained on implicit feedback. As such, this ascertains the ability of LRML to uncover hidden relational structure within implicit datasets.Comment: WWW 201

    Learning over Knowledge-Base Embeddings for Recommendation

    Full text link
    State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines

    TransNFCM: Translation-Based Neural Fashion Compatibility Modeling

    Full text link
    Identifying mix-and-match relationships between fashion items is an urgent task in a fashion e-commerce recommender system. It will significantly enhance user experience and satisfaction. However, due to the challenges of inferring the rich yet complicated set of compatibility patterns in a large e-commerce corpus of fashion items, this task is still underexplored. Inspired by the recent advances in multi-relational knowledge representation learning and deep neural networks, this paper proposes a novel Translation-based Neural Fashion Compatibility Modeling (TransNFCM) framework, which jointly optimizes fashion item embeddings and category-specific complementary relations in a unified space via an end-to-end learning manner. TransNFCM places items in a unified embedding space where a category-specific relation (category-comp-category) is modeled as a vector translation operating on the embeddings of compatible items from the corresponding categories. By this way, we not only capture the specific notion of compatibility conditioned on a specific pair of complementary categories, but also preserve the global notion of compatibility. We also design a deep fashion item encoder which exploits the complementary characteristic of visual and textual features to represent the fashion products. To the best of our knowledge, this is the first work that uses category-specific complementary relations to model the category-aware compatibility between items in a translation-based embedding space. Extensive experiments demonstrate the effectiveness of TransNFCM over the state-of-the-arts on two real-world datasets.Comment: Accepted in AAAI 2019 conferenc
    corecore