4 research outputs found

    Анализ гСомСтричСской Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΈ сборкС слоТных ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡Π° принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ

    Get PDF
    Computer aided assembly planning (CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. A configuration of the technical system imposes fundamental restrictions on the design solutions of the assembly process. The CAAP studies offer various methods for modelling geometric constraints. The most accurate results are obtained from the studies of geometric obstacles, which prohibit the part movement to the appropriate position in the product, by the collision analysis methods. An assembly of complex technical systems by this approach requires very high computational costs, since the analysis should be performed for each part and in several directions.The article describes a method for minimizing the number of direct checks for geometric obstacle avoidance. Introduces a concept of the geometric situation to formalize such fragments of a structure, which require checking for geometric obstacle avoidance. Formulates two statements about geometric heredity during the assembly. Poses the task of minimizing the number of direct checks as a non-antagonistic two-person game on two-colour painting of an ordered set. Presents the main decision criteria under uncertainty. To determine the best criterion, a computational experiment was carried out on painting the ordered sets with radically different structural properties. All the connected ordered sets are divided into 13 subclasses, each of which includes structurally similar instances. To implement the experiment, a special program has been developed that creates a random ordered set in the selected subclass, implements a game session on its coloration, and also collects and processes statistical data on a group of the homogeneous experiments.The computational experiment has shown that in all subclasses of the partial orders, the Hurwitz criterion with a confidence coefficient of 2/3 and that of Bayes-Laplace demonstrate the best results. The Wald and Savage criteria have demonstrated the worst results. In the experiment, a difference between the best and worst results reached 70%. With increasing height (maximum number of levels) of an ordered set, this difference tends to grow rapidly. In the subclass of pseudo-chains, all criteria showed approximately equal results.The game model of geometric obstacles avoidance allows formalizing data on geometric heredity and obtaining data on the composition and the minimum number of configurations, the test of which objectifies all existing-in-the-product geometric constraints on the movements of parts during assembly.Автоматизация проСктирования процСссов сборки слоТных ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ – это ваТная ΠΈ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° соврСмСнной ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ. Π€ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ограничСния Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ сборочного ΠΏΠ΅Ρ€Π΅Π΄Π΅Π»Π° Π½Π°ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅Ρ‚ гСомСтрия тСхничСской систСмы. Π’ исслСдованиях ΠΏΠΎ CAAP ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ модСлирования гСомСтричСских связСй. Π‘Π°ΠΌΡ‹Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΄Π°Π΅Ρ‚ исслСдования гСомСтричСских прСпятствии, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π·Π°ΠΏΡ€Π΅Ρ‰Π°ΡŽΡ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅Ρ‚Π°Π»ΠΈ Π² слуТСбноС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΈΠ·Π΄Π΅Π»ΠΈΠΈ, ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π°Π½Π°Π»ΠΈΠ·Π° столкновСний. Для сборки слоТных тСхничСских систСм Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ ΠΎΡ‡Π΅Π½ΡŒ высоких Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Ρ‚Ρ€Π°Ρ‚, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π°Π½Π°Π»ΠΈΠ· слСдуСт Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄Π΅Ρ‚Π°Π»ΠΈ ΠΈ Π² Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… направлСниях.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описан ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ числа прямых ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΎΠΊ Π½Π° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΡŒ. Π’Π²Π΅Π΄Π΅Π½ΠΎ понятиС гСомСтричСской ситуации, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΡƒΠ΅Ρ‚ Ρ‚Π°ΠΊΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ конструкции, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… трСбуСтся ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΡŒ. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π΄Π²Π° утвСрТдСния ΠΎ гСомСтричСской наслСдствСнности ΠΏΡ€ΠΈ сборкС. Π—Π°Π΄Π°Ρ‡Π° ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ числа прямых ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΎΠΊ поставлСна ΠΊΠ°ΠΊ нСантагонистичСнская ΠΈΠ³Ρ€Π° Π΄Π²ΡƒΡ… Π»ΠΈΡ† ΠΏΠΎ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡŽ упорядочСнного мноТСства Π² Π΄Π²Π° Ρ†Π²Π΅Ρ‚Π°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ основныС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π² условиях нСопрСдСлСнности. Для опрСдСлСния Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ критСрия ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ экспСримСнт ΠΏΠΎ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡŽ упорядочСнных мноТСств с Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ структурными свойствами. ВсС связныС упорядочСнныС мноТСства Ρ€Π°Π·Π±ΠΈΡ‚Ρ‹ Π½Π° 13 подклассов, Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… входят структурно ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ экзСмпляры. Для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ экспСримСнта создана ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, которая создаСт случайноС упорядочСнноС мноТСство Π² Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΌ подклассС, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΠ΅Ρ‚ ΠΈΠ³Ρ€ΠΎΠ²ΠΎΠΉ сСанс ΠΏΠΎ Π΅Π³ΠΎ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡŽ, Π° Ρ‚Π°ΠΊΠΆΠ΅ собираСт ΠΈ ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅Ρ‚ статистичСскиС Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… экспСримСнтов.Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ экспСримСнт ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π²ΠΎ всСх подклассах частичных порядков Π»ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρƒ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² Π“ΡƒΡ€Π²ΠΈΡ†Π° с коэффициСнтом довСрия 2/3 ΠΈ БайСса-Лапласа. Π₯ΡƒΠ΄ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ продСмонстрировали ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ Π’Π°Π»ΡŒΠ΄Π° ΠΈ Π‘Π΅Π²ΠΈΠ΄ΠΆΠ°. Π Π°Π·Π½ΠΈΡ†Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡƒΡ‡ΡˆΠΈΠΌΠΈ ΠΈ Ρ…ΡƒΠ΄ΡˆΠΈΠΌΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ достигала Π² экспСримСнтС 70%. Π­Ρ‚Π° Ρ€Π°Π·Π½ΠΈΡ†Π° ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΡŽ ΠΊ быстрому росту с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ высоты (максимального числа ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ) упорядочСнного мноТСства. Π’ подклассС псСвдоцСпСй всС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ€Π°Π²Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Π˜Π³Ρ€ΠΎΠ²Π°Ρ модСль гСомСтричСской Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΠΈ позволяСт Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ гСомСтричСской наслСдствСнности ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ составС ΠΈ минимальном числС ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΉ, ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅Ρ‚ всС гСомСтричСскиС ограничСния Π½Π° двиТСния Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ ΠΏΡ€ΠΈ сборкС, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² ΠΈΠ·Π΄Π΅Π»ΠΈΠΈ

    On reconfiguration of disks in the plane and related problems

    Get PDF
    We revisit two natural reconfiguration models for systems of disjoint objects in the plane: translation and sliding. Consider a set of n pairwise interior-disjoint objects in the plane that need to be brought from a given start (initial) configuration S into a desired goal (target) configuration T, without causing collisions. In the translation model, in one move an object is translated along a fixed direction to another position in the plane. In the sliding model, one move is sliding an object to another location in the plane by means of an arbitrarily complex continuous motion (that could involve rotations). We obtain various combinatorial and computational results for these two models: (I) For systems of n congruent disks in the translation model, Abellanas et al. showed that 2n βˆ’ 1 moves always suffice and ⌊8n/5 βŒ‹ moves are sometimes necessary for transforming the start configuration into the target configuration. Here we further improve the lower bound to ⌊5n/3 βŒ‹ βˆ’ 1, and thereby give a partial answer to one of their open problems. (II) We show that the reconfiguration problem with congruent disks in the translation model is NPhard, in both the labeled and unlabeled variants. This answers another open problem of Abellanas et al. (III) We also show that the reconfiguration problem with congruent disks in the sliding model is NP-hard, in both the labeled and unlabeled variants. (IV) For the reconfiguration with translations of n arbitrary convex bodies in the plane, 2n moves are always sufficient and sometimes necessary

    Translation separability of sets of polygons

    No full text
    We consider the problem of separating a set of polygons by a sequence of translations (one such collision-free translation motion for each polygon). If all translations are performed in a common direction the separability problem so obtained has been referred to as the uni-directional separability problem; for different translation directions, the more general multi-directional separability problem arises. The class of such separability problems has been studied previously and arises e.g. in computer graphics and robotics. Existing solutions to the uni-directional problem typically assume the objects to have a certain predetermined shape (e.g., rectangular or convex objects), or to have a direction of separation already available. Here we show how to compute all directions of unidirectional separability for sets of arbitrary simple polygons. The problem of determining whether a set of polygons is multi-directionally separable had been posed by G.T. Toussaint. Here we present an algorithm for solving this problem which, in addition to detecting whether or not the given set is multidirectionally separable, also provides an ordering in which to separate the polygons. In case that the entire set is not multi-directionally separable, the algorithm will find the largest separable subset
    corecore