456 research outputs found

    Semantic Question Answering System over Linked Data using Relational Patterns

    Get PDF
    Hakimov S, Tunc H, Akimaliev M, Dogdu E. Semantic Question Answering System over Linked Data using Relational Patterns. In: EDBT/ICDT LWDM 2013. 2013.Question answering is the task of answering questions in naturallanguage. Linked Data project and Semantic Web communitymade it possible for us to query structured knowledge bases likeDBpedia and YAGO. Only expert users, however, with theknowledge of RDF and ontology definitions can build correctSPARQL queries for querying knowledge bases formally. In thispaper, we present a method for mapping natural languagequestions to ontology-based structured queries to retrieve directanswers from open knowledge bases (linked data). Our tool isbased on translating natural language questions into RDF triplepatterns using the dependency tree of the question text. Inaddition, our method uses relational patterns extracted from theWeb. We tested our tool using questions from QALD-2, QuestionAnswering over Linked Data challenge track and found promisingpreliminary results

    SE-KGE: A Location-Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting

    Get PDF
    Learning knowledge graph (KG) embeddings is an emerging technique for a variety of downstream tasks such as summarization, link prediction, information retrieval, and question answering. However, most existing KG embedding models neglect space and, therefore, do not perform well when applied to (geo)spatial data and tasks. For those models that consider space, most of them primarily rely on some notions of distance. These models suffer from higher computational complexity during training while still losing information beyond the relative distance between entities. In this work, we propose a location-aware KG embedding model called SE-KGE. It directly encodes spatial information such as point coordinates or bounding boxes of geographic entities into the KG embedding space. The resulting model is capable of handling different types of spatial reasoning. We also construct a geographic knowledge graph as well as a set of geographic query-answer pairs called DBGeo to evaluate the performance of SE-KGE in comparison to multiple baselines. Evaluation results show that SE-KGE outperforms these baselines on the DBGeo dataset for geographic logic query answering task. This demonstrates the effectiveness of our spatially-explicit model and the importance of considering the scale of different geographic entities. Finally, we introduce a novel downstream task called spatial semantic lifting which links an arbitrary location in the study area to entities in the KG via some relations. Evaluation on DBGeo shows that our model outperforms the baseline by a substantial margin.Comment: Accepted to Transactions in GI

    Querying knowledge graphs in natural language.

    Get PDF
    Knowledge graphs are a powerful concept for querying large amounts of data. These knowledge graphs are typically enormous and are often not easily accessible to end-users because they require specialized knowledge in query languages such as SPARQL. Moreover, end-users need a deep understanding of the structure of the underlying data models often based on the Resource Description Framework (RDF). This drawback has led to the development of Question-Answering (QA) systems that enable end-users to express their information needs in natural language. While existing systems simplify user access, there is still room for improvement in the accuracy of these systems. In this paper we propose a new QA system for translating natural language questions into SPARQL queries. The key idea is to break up the translation process into 5 smaller, more manageable sub-tasks and use ensemble machine learning methods as well as Tree-LSTM-based neural network models to automatically learn and translate a natural language question into a SPARQL query. The performance of our proposed QA system is empirically evaluated using the two renowned benchmarks-the 7th Question Answering over Linked Data Challenge (QALD-7) and the Large-Scale Complex Question Answering Dataset (LC-QuAD). Experimental results show that our QA system outperforms the state-of-art systems by 15% on the QALD-7 dataset and by 48% on the LC-QuAD dataset, respectively. In addition, we make our source code available
    corecore