17 research outputs found

    Optimization of object query languages

    Get PDF

    Object-Oriented Query Language Design and Processing

    Get PDF
    This thesis proposes an object-oriented query language that is more powerful than many existing query languages. The language is formally specified and its expressive power is demonstrated by giving four translation schemes from other prominent object-oriented query languages. Further, this query language can be supported by a query algebra and both the query language and query algebra can be optimised using meaning preserving transformation rules. Object-Oriented Query Languages. The functional requirements of high-level object-oriented query languages are identified and they combine as well as supplement features found in existing object-oriented query languages. Effectively they formulate a query model against which existing query languages can be evaluated and compared. An evaluation of four representative query languages chosen from research prototypes and commercial products shows that none satisfies all the requirements. On the basis of the requirements a new query language, object comprehensions, is developed to provide a concise, clear, powerful, and optimisable query language for object-oriented databases. Some optimisation opportunities for the novel features are identified. A set of translation schemes from the query languages studied to object comprehensions is presented. Such translations demonstrate that object comprehensions are at least as powerful as these query languages and a system supporting object comprehensions can potentially support multiple query languages by providing translations to object comprehensions. Algebraic Support. The canonical algebra provides an abstract execution engine with which object comprehension queries can be expressed using algebraic operations. The translation scheme from object comprehensions to the canonical algebra is very simple and is no for supporting queries involving mixed collection classes The canonical algebra shares many operations with other query algebras and is formally specified. A set of transformation rules that can be used for optimisation is presented whose validity can be verified given the formal specification. Formal Data Model. The data model which forms the basis of investigation is formally defined using the specification language Z. This reference data model captures all the essential features of existing object-oriented data models including multiple inheritance. However, unlike existing data models, it also supports a generalised form of method over-loading. Static type checking of such overloaded methods is studied in this thesis

    An object-oriented structured query language and its translation to a formal algebra

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references leaves 51-53.Gür, Ali GürhanM.S

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    Transaction management in object-oriented data base systems

    Get PDF
    Object-oriented data bases are fast gaining in popularity, especially with the advent of advanced applications like computer aided design (CAD) and multimedia data bases (MMDB). The modeling techniques required by these applications cannot be met by conventional data base systems. The semantic richness of the object-oriented model facilitates the modeling of advanced data base applications. These applications are characterized by long-duration cooperating transactions. Unlike the conventional data bases, serializability can no linger be the correctness criterion for concurrent transaction execution. A new transaction model for object-oriented data bases is needed. This dissertation describes our research in the area of transaction management for object-oriented data bases. A new transaction model for object-oriented data bases is defined. This model takes into consideration the unique requirements of the advanced applications. Data base consistency is now defined in terms of correctability. Object-oriented Correct Schedules (OOCS) and Object-oriented Correctable Schedules (OOCLS) are defined. This dissertation also describes a new concurrency control protocol that satisfies the correctness criterion for concurrent execution of transactions in an object-oriented data base environment, i.e. it allows only Object-oriented Correctable Schedules. Users of a data base interact with it through means of queries. Queries are then translated into transactions. The data base functionality necessary to support queries is also discussed in this research work

    Query processing in temporal object-oriented databases

    Get PDF
    This PhD thesis is concerned with historical data management in the context of objectoriented databases. An extensible approach has been explored to processing temporal object queries within a uniform query framework. By the uniform framework, we mean temporal queries can be processed within the existing object-oriented framework that is extended from relational framework, by extending the existing query processing techniques and strategies developed for OODBs and RDBs. The unified model of OODBs and RDBs in UmSQL/X has been adopted as a basis for this purpose. A temporal object data model is thereby defined by incorporating a time dimension into this unified model of OODBs and RDBs to form temporal relational-like cubes but with the addition of aggregation and inheritance hierarchies. A query algebra, that accesses objects through these associations of aggregation, inheritance and timereference, is then defined as a general query model /language. Due to the extensive features of our data model and reducibility of the algebra, a layered structure of query processor is presented that provides a uniforrn framework for processing temporal object queries. Within the uniform framework, query transformation is carried out based on a set of transformation rules identified that includes the known relational and object rules plus those pertaining to the time dimension. To evaluate a temporal query involving a path with timereference, a strategy of decomposition is proposed. That is, evaluation of an enhanced path, which is defined to extend a path with time-reference, is decomposed by initially dividing the path into two sub-paths: one containing the time-stamped class that can be optimized by making use of the ordering information of temporal data and another an ordinary sub-path (without time-stamped classes) which can be further decomposed and evaluated using different algorithms. The intermediate results of traversing the two sub-paths are then joined together to create the query output. Algorithms for processing the decomposed query components, i. e., time-related operation algorithms, four join algorithms (nested-loop forward join, sort-merge forward join, nested-loop reverse join and sort-merge reverse join) and their modifications, have been presented with cost analysis and implemented with stream processing techniques using C++. Simulation results are also provided. Both cost analysis and simulation show the effects of time on the query processing algorithms: the join time cost is linearly increased with the expansion in the number of time-epochs (time-dimension in the case of a regular TS). It is also shown that using heuristics that make use of time information can lead to a significant time cost saving. Query processing with incomplete temporal data has also been discussed

    Research Reports: 1984 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    A NASA/ASEE Summer Faulty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1984. Topics covered include: (1) data base management; (2) computational fluid dynamics; (3) space debris; (4) X-ray gratings; (5) atomic oxygen exposure; (6) protective coatings for SSME; (7) cryogenics; (8) thermal analysis measurements; (9) solar wind modelling; and (10) binary systems

    Translating OSQL-Queries into Efficient Set Expressions

    Get PDF
    Efficient query processing is one of the key promises of database technology. With the evolution of supported data models—from relational via nested relational to object-oriented—the need for such efficiency has not diminished, and the general problem has increased in complexity. In this paper, we present a heuristics-based, extensible algorithm for the translation of object-oriented query expressions in a variant of OSQL to an algebra extended with specialized join operators, designed for the task. We claim that the resulting algebraic expressions are cost-efficient. Our approach builds on well-known optimization strategies for the relational model, but extends them to include relations and more arbitrary sets as values. We pay special attention to the most costly forms of OSQL queries, namely those with full subqueries in the SELECT- or WHERE-clause. The paper builds on earlier results [17, 18]

    Translating OSQL queries into efficient set expressions

    No full text
    corecore