139,862 research outputs found

    Observation and abstract behaviour in specification and implementation of state-based systems

    Get PDF
    Classical algebraic specification is an accepted framework for specification. A criticism which applies is the fact that it is functional, not based on a notion of state as most software development and implementation languages are. We formalise the idea of a state-based object or abstract machine using algebraic means. In contrast to similar approaches we consider dynamic logic instead of equational logic as the framework for specification and implementation. The advantage is a more expressive language allowing us to specify safety and liveness conditions. It also allows a clearer distinction of functional and state-based parts which require different treatment in order to achieve behavioural abstraction when necessary. We shall in particular focus on abstract behaviour and observation. A behavioural notion of satisfaction for state-elements is needed in order to abstract from irrelevant details of the state realisation

    A Survey of Languages for Specifying Dynamics: A Knowledge Engineering Perspective

    Get PDF
    A number of formal specification languages for knowledge-based systems has been developed. Characteristics for knowledge-based systems are a complex knowledge base and an inference engine which uses this knowledge to solve a given problem. Specification languages for knowledge-based systems have to cover both aspects. They have to provide the means to specify a complex and large amount of knowledge and they have to provide the means to specify the dynamic reasoning behavior of a knowledge-based system. We focus on the second aspect. For this purpose, we survey existing approaches for specifying dynamic behavior in related areas of research. In fact, we have taken approaches for the specification of information systems (Language for Conceptual Modeling and TROLL), approaches for the specification of database updates and logic programming (Transaction Logic and Dynamic Database Logic) and the generic specification framework of abstract state machine

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Stateful Testing: Finding More Errors in Code and Contracts

    Full text link
    Automated random testing has shown to be an effective approach to finding faults but still faces a major unsolved issue: how to generate test inputs diverse enough to find many faults and find them quickly. Stateful testing, the automated testing technique introduced in this article, generates new test cases that improve an existing test suite. The generated test cases are designed to violate the dynamically inferred contracts (invariants) characterizing the existing test suite. As a consequence, they are in a good position to detect new errors, and also to improve the accuracy of the inferred contracts by discovering those that are unsound. Experiments on 13 data structure classes totalling over 28,000 lines of code demonstrate the effectiveness of stateful testing in improving over the results of long sessions of random testing: stateful testing found 68.4% new errors and improved the accuracy of automatically inferred contracts to over 99%, with just a 7% time overhead.Comment: 11 pages, 3 figure

    LCM and MCM: specification of a control system using dynamic logic and process algebra

    Get PDF
    LCM 3.0 is a specification language based on dynamic logic and process algebra, and can be used to specify systems of dynamic objects that communicate synchronously. LCM 3.0 was developed for the specification of object-oriented information systems, but contains sufficient facilities for the specification of control to apply it to the specification of control-intensive systems as well. In this paper, the results of such an application are reported. The paper concludes with a discussion of the need for theorem-proving support and of the extensions that would be needed to be able to specify real-time properties

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    Built-In Self-Test Methodology for A/D Converters

    Get PDF
    A (partial) Built-in Self-Test (BIST) methodology is proposed for analog to digital (A/D) converters. In this methodology the number of bits of the A/D converter that needs to be monitored externally in a test is reduced. This reduction depends, among other things, on the frequency of the applied test signal. At low test signal frequencies only the least significant bit (LSB) needs to be monitored and a "full" BIST becomes feasible. An analysis is made of the trade-off between the size of the on-chip test circuitry and the accuracy of this BIST techniqu
    • 

    corecore