
Observation and Abstract Behaviour in Specification and
Implementation of State-based Systems

Claus Pahl
School of Computer Applications

Dublin City University
Dublin 9, Ireland

cpahl@compapp.dcu.ie

Abstract

Classical algebraic specification is an accepted framework for specification. A criticism which applies is the
fact that it is functional, not based on a notion of state as most software development and implementation languages
are. We formalise the idea of a state-based object or abstract machine using algebraic means. In contrast to similar
approaches we consider dynamic logic instead of equational logic as the framework for specification and implemen-
tation. The advantage is a more expressive language allowing us to specify safety and liveness conditions. It also
allows a clearer distinction of functional and state-based parts which require different treatment in order to achieve
behavioural abstraction when necessary. We shall in particular focus on abstract behaviour and observation. A be-
havioural notion of satisfaction for state-elements is needed in order to abstract from irrelevant details of the state
realisation.

1 Introduction

Algebraic methods have been widely used in the specification of computer systems. Algebraic specification refers to
the use of algebraic semantics and equational reasoning for functional systems [1]. During the last decade, algebraic
methods have been used to support the more wide-spread state-based software development. Examples of state-based
specification include the pre/post-condition technique originally developed by Hoare [2, 3]. This formal technique
has found its way into various software development approaches and languages such as the UML Object Constraint
Language [4] or the design-by-contract approach [5]. The pre/post-condition technique can be extended or gener-
alised in various ways [6]. We shall address the more general framework of dynamic logic here, including pre- and
postconditions. We shall in particular address semantic foundations for a framework for observational specification of
state-based systems in this paper. This shall result in a more flexible specification and implementation framework for
state-based systems.

A classical example of the usefulness of obervational specification is the realisation of a data type boolean using an
implementation of a type integer. The data values needed to interpret terms formulated based on boolean constructors
(e.g. true and not) form only a subset of a carrier set for integers. We expect boolean axioms only to hold within this
subset. An observability predicate can declare those substructures reachable with boolean constructors as observable.
Observation and behaviour oriented extensions to the algebraic specification of data types exist (e.g. [7, 8, 9, 10,
11, 12, 13, 14]), but similar approaches to state-based specification are still lacking. We aim to provide semantical
foundations for such a framework of behaviour and observation in the context of state-based systems.

We shall give an outline of our approach here. The classical notion of signatures is extended by introducing hidden,
non-observable sorts representing an internal state. Semantic structures interpreting these signatures provide suitable
elements. Slightly different techniques apply for defining and reasoning about functional and state-based parts. One

5th Irish Workshop on Formal Methods IWFM’01 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the most well-known approaches to these problems is the hidden algebra framework developed by the OBJ-group,
see e.g. [15, 16]. There, an equational, behaviourally oriented framework for reasoning is established. We follow the
hidden algebra approach in its basic idea: we provide signatures with a distinguished state sort, and interpret these
in structures with a local state, called objects. An early version of this model has been presented in [17]. Then, we
deviate from the path by using concepts from modal logics to introduce a specification and reasoning framework. A
dynamic logic will be used. Modal logics, such as dynamic and temporal logics, provide constructs that will allow
us to specify safety as well as liveness constraints – a wider range of properties than with equational logics. Safety
properties shall guarantee that unwanted things will not occur, and liveness properties should ensure that wanted
things will eventually occur. These properties are in particular important in the specification of dynamic and reactive
systems. Our particular interest lies in the implementation of specifications. In implementing a specification it has
to be shown that the implementation satisfies the abstract requirements of the specifications. In order to allow the
simpler equational reasoning to be used, we complement a dynamic logic based implementation with a refinement
notion which needs equational reasoning only in proofs. We consider data and operation refinement and show how
they relate to the paradigm of observational or behavioural specification, namely, that formulas need only to be true
under all possible experiments (or observations).

We start with our semantic model in Section 2. Then, in Section 3, we present the dynamic logic. Section 4 intro-
duces basic concepts for behavioural specifications. In Section 5, we look at data refinement based on behavioural
abstraction. In Section 6, the operation refinement is investigated. Proofs, if they are not given here, can be found in
[18].

2 A State-based Model

The main building blocks of our computational model – signatures with state, objects as the corresponding models,
and an interpretation – shall be formalised in this section. The objective is to formalise the notion of an object - an
algebraic entity that encapsulates a local state.

We assume a set of sorts Sort including data sorts s�� s�� � � � and the distinguished sort state, and a set of identifiers
Id. For each state signature � in a class of signatures Sig we define:

� a mapping sorts � Sig� PSort with state � sorts���,

� a mapping attr � Sig � PId with a signature sig�a� � s� � � � �� sn � s for each attribute a � attr��� with
s�� � � � � sn� s � �sorts��� � fstateg�1

� the state sort state as attr��� � sig�attr����

� a mapping tran � Sig � PId with a signature sig�p� � state� s�� � � �� sm � state� s for each transition
p � tran���.

Basic sorts – not including state – are typically data types used in the definition of attributes. We assume a built-in
sort bool with the usual constants and functions. The set of attributes, variables (nullary functions) and other functions,
forms an explicit, but still abstract state. The state itself is represented as an assignment, associating attribute identifiers
with functions. These functions are the only means to inspect the state content. Transitions are parameterised state
transformers, transforming one state into another, also yielding a functional result value.

Example 2.1 Sample sorts in a stack data type are the stack content stack – which shall represent the state-sort –
and the data type elem. The following � is a signature:

sorts��� � fstate� elem� boolg
attr��� � ftop �� elem� is full �� boolg
tran��� � fpush � state� elem� state� pop � state� stateg

1a can be a nullary symbol, then called a state variable.

2



An example for an attribute is sig�top� �� elem. Examples for transitions are sig�push� � stack�elem� stack
or sig�pop� � stack � stack.

Let ���� be state signatures. �� is a subsignature of �, or �� � �, if sorts���� � sorts���, attr���� � attr���
and tran���� � tran���.

A hidden signature [15] is a signature with disjoint hidden and visible sorts. The signature ensures data encapsu-
lation: a hidden signature can only be embedded into a visible one, if no new operations are added to the signature.
Components and transitions depend on the state. Clearly, our state signatures are hidden signatures in the sense of
[16].

A state signature morphism � is a signature morphism where �Sort�state� is the identity, and for any operation
op � attr��� � tran��� with sig�op� � a�� � � ��ai � b�� � � ��bj we require sig��Op�op�� � �Sort�a��� � � ��
�Sort�ai� � �Sort�b��� � � ���Sort�bj� for appropriate i� j, where �Sort is a mapping on sorts and �Op a mapping on
attributes and transition identifiers. A subsignature �� can be embedded into a signature � by an embedding signature
morphism.

Example 2.2 Consider the signature ��:

sorts��� � fstate� elemg
attr��� � ftop �� elemg
tran��� � fpush � state� elem� state� pop � state� stateg

�� is a subsignature of � – see Example 2.1. The embedding of �� into � is a signature morphism.

A signature induces a set of syntactically correct expressions, constructed by free variables and the operation names
of the signature. In many-sorted signatures, a sort will be associated with each term. Let X � �Xs�s�sorts��� be a
sorts���-sorted set of free variables. The functions �� and �� are projections onto the first and second component of
their argument, respectively.

� �-terms of data sort s � sorts��� over Xs are variables x � Xs; every a�a�� � � � � an� for a � attr���
with a � s� � � � � � sn � s and ai � si; every projection ���p�st� a�� � � � � am�� for p � tran��� with
p � state� s� � � � �� sm � state� s, st � state and ai � si.

� �-terms of state sort state � sorts��� over Xs are identifiers st to denote the state; and every projection
���p�st� a�� � � � � am�� for p � tran��� with p � state� s� � � � �� sm � state� s, st � state and ai � si.

Example 2.3 A �-term of data sort bool is is full��. A �-terms of state sort state are pop�st� or push�st� e�.

With T ���s we denote the set of ground �-terms of sort s. With T ��� X�s we denote the set of �-terms of sort s
including variables. A term of sort state is also called a command.

We can now capture the idea of a state-based computational model precisely. An algebraic structure is called a �-
object for a state signature �, if it has

� a carrier set S, including an undefinedness symbol �, for each sort s.

� a function of type S� � � � �� Sn � S for each attribute with signature s� � � � �� sn � s.

� a carrier set State for sort state containing total assignments Id � F if F is the set of functions that match
signatures of attributes.

� a designated initial state STinit � State .

3



� a function of type �State � S� � � � � � Sm� � �State � S� for each transition symbol in tran��� with the
corresponding signature.

�-objects can be seen as abstract machines with operations as instructions. Initial states (and the ability to specify
properties of the initial state) are essential in the context of dynamic or reactive systems. Underlying each of these
models, we assume an equationally specified algebra, realising the data type(s) used in the definition of the attributes.
These algebras are static, i.e. their functions can not be changed by state transitions. �-objects are extensions of
these algebras. The state can also be seen as an algebra consisting of carrier sets for data sorts and functions for
the attributes. The ��-state algebra for a �-object shall be defined as the algebra consisting of carrier sets for the
data sorts (excluding state) and functions for the attributes attr���. The signature �� consists of the data sorts and
attribute signatures of �. This shows that �-objects fit into the states-as-algebras paradigm.

A hidden algebra is an algebra which satisfies a hidden specification based on a hidden signature [15]. A hidden
algebra should encapsulate an algebra as a substructure (reduct) which represents the data part. Our objects are hidden
algebras in this sense.

A �-object involves bindings: functions are bound to attribute and transition identifiers. A state ST of sort state
can be modified by transitions. We need a substitution mechanism on states. The expression substitute�ST� x 	� v�
substitutes in the mapping ST the former binding for an identifier x by a binding of x to the value val:

substitute�ST� x 	� val��z� �

�
ST �z� for z 
� x
val for z � x

Domain and range of ST shall be disjoint. Then, x cannot occur in val.

A mapping v from identifiers to semantical entities is called a valuation; its inductively defined extension v� for
arbitrary terms is called an interpretation. Each term depends on the current state. Let ST � state be a state, i.e., an
assignment2 of functions to identifiers.

v�ST� x� �� ST �x�

The value of an identifier x is stored in ST – remember the definition of sort state: state � attr��� � sig�attr����,
i.e., that the state associates attributes and functions.

v��ST� a�a�� � � � � an�� ��
ST �a��v��ST� a��� � � � � v

��ST� an��
v��ST� p�ST� a�� � � � � am�� ��

��p���ST� v��ST� a��� � � � � v
��ST� am��

The definition of an attribute a can be modified, thus we have to reinterpret a in each current state ST . Transitions p
might modify the definition of attributes. The brackets ����� are used to denote the function which realises a transition
symbol.

Finally, we introduce a definedness predicate: D�ST� t� � true, if v��ST� t� 
� � for some state ST . Termination
of operations will be expressed using the definedness predicate.

Example 2.4 A �-object A may contain an attribute top. state is the local state variable and top is an attribute based
on the content of state. States can be transformed into another by push and pop. push is a transition and, therefore,
changes the state. By executing push(st,e) the state is changed by substituting the binding of top through assigning a
new value (v��ST� e�) to the attribute identifier top. The effect of push can be observed by applying top.

2We use the term assignment for the state and valuation for identifiers of the signature in general.

4



3 State Transition Logic

Modal logics assume structures with a notion of state or time [19, 20]. The presented model of �-objects is such
a structure. Dynamic logic, a particular modal logic, is a first-order predicate logic with a notion of state, which
generalises Hoare-logic. Based on these logics, we will introduce a simple dynamic logic. A proof system is not
presented here, see [18] for a sound and relatively complete one for a general dynamic logic and [21] for one geared
towards the use in refinement calculi.

The state transition formula � � �P �� – where � is a precondition, P is a command (a term of sort state) and � is a
postcondition – describes a state transition axiomatically. The operator ���� is called the modal box- or always-operator.
� and � describe properties of attributes by classical first-order formulas. The formula � � �P �� holds in a current
state ST in a �-object A, if in case � holds in ST and, if P terminates, then � has to hold in the following state. The
second modal operator is the so-called diamond- or eventually-operator. This operator allows us to specify liveness
properties. The formula�P 	 � expresses that P has a terminating path after which � holds. In case of determinsitic
programs, it says that P will terminate and � holds afterwards. For example, �P 	 true is a termination assertion.
These constructs will be defined formally later on.

Example 3.1 The effect of the stack transition push can be specified by

�is full() � �push(st,e)� top()=e

If the precondition – the stack is not full – is satisfied, then executing push(st,e) on stack st has the effect that e is the
new top element.

is full() � �push(st,e)	 true

push should terminate if the stack is full (whatever the result might be).

Let � be a state signature and X a sorts���-sorted set of free variables. A �-equation has the form t �s t� with
t� t� � T ��� X�s for a data sort s. A �state-equation has the form t �state t

� with t� t� � T ��� X�state. The set of
well-formed formulas WFF��� is the smallest set with the following properties3:

� all �-equations and �state-equations are in WFF���,

� if �� � � WFF���, then �� � � WFF���,

� if P is a command and � � WFF���, then �P � � � WFF��� and �P 	 � � WFF���.

We define the diamond operator as follows:

�P 	 � �� ��P ���

An operator prev shall also be defined. The operator refers to the value of an argument variable in the previous state
of the command P under consideration. Typically, the prev operator is used to specify the new value of a variable in
terms of the old value, e.g. � P � a�� � prev�a��� � 	.

A specification M is a pair M � h�� Ei consisting of a state-based signature � and a set E of well-formed formulas
E � WFF���, including an non-modal formula Init. Init is a non-modal formula characterising the initial state of a
�-object.

3We have omitted classical connectors, such as negation or disjunction, and quantification. They can be defined as usual for first-order predicate
logics.

5



Example 3.2 A specification M � h�� Ei for a stack consists of:

� �
sorts��� � fstate� elem� boolg
attr��� � ftop �� elem� is full �� boolg
tran��� � fpush � state� elem� state� pop � state� stateg

E �
�is full��� �push�st� e�� top�� � e
top�� � e� �push�st� e��
 pop�st�� top�� � e
is full��� �push�st� e�	 true

The state is the content of the stack, elem is the element sort. The element e shall be of sort elem and st of sort state.
This example assumes that a sequence operator 
 is defined on transitions. This is not a complete specification of a
stack as it, for example, does not specify the effect of pop on empty stacks.

As we have seen in the example, command combinators such as the sequence ’
’ are useful. We define the combinators

 (sequence), � (non-deterministic choice), and � (iteration):

� v��ST� p
 q� �� v�����v
��ST� p��� q�

� v��ST� p� q� �� v��ST� p� or v��ST� q� – non-deterministically chosen

� v��ST� p�� �� v������ � � ����v
���ST� p��� p�� � � � � p�

For two of them, we can find simple axiomatisations:

� �p
 q��� �p��q��

� �p� q��� �p�� 
 �q��

A notion of satisfaction relates formulas and �-objects. Let v be a valuation based on states and v� an interpretation.
Assume a �-object A, a state ST � State and a �-formula �. A satisfies � in state ST , or A�ST j� �, is defined by

� A�ST j� t �s t
� i� v��ST� t� � v��ST� t�� for a data sort s

� A�ST j� t �state t� i� v�����v
��ST� t��� a�a�� � � � � anc��� � v�����v

��ST� t���� a�a�� � � � � anc�� for all at-
tribute applications

� A�ST j� �� � i� ���� 
 � 4

� A�ST j� �P � � i� D�P � � A� ���v
��ST� P �� j� � where D is the definedness predicate

Nontermination is denoted by �state. Note, that terms of sort state are behaviourally equal. Two terms are only
equal if the interpretations of all attribute applications in the subsequent state are equal. This definition was chosen
instead of comparing two state structures directly which would have involved non-relevant comparisons.

Example 3.3 The transition push on stack has been specified by

�is full() � �push(st,e)� top()=e

Only the observable behaviour of push is specified, i.e. if push is executed in a state satisfying �is full() and it termi-
nates, then it should terminate in a state whose properties can be inspected by attributes such as top.

4with the usual definitions for � and �

6



The class of all �-objects is denoted with Obj���. The models of a specification M � h�� Ei are denoted by their
model class.

mod�h�� Ei� �� fA � Obj��� j A�ST j� � for all � � E and ST � Stateg

Note that E contains an initial state condition, i.e. models are only those objects whose designated initial state satisfies
that condition. Model construction not requiring closedness with respect to isomorphism is usually called loose. Here,
even reachability – the no-junk property – is not required. We call this model semantics very loose.

We will also introduce notions of a model of a transition and a respective satisfaction relation. Let a transition p in
M� be specified by �� � �p� �� and in M� by �� � �p� ��. Then modtrM �p� denotes models of a transition p, i.e.
those functions which interpret a transition p in a model of a specification M . Let A � mod�M�, ��p�� � modtrM �p�
and p � tran�sig�M��. Then the satisfaction j�tr is defined as follows: ��p�� j�tr � holds, if A j� � holds for all
objects A � mod�M� which interpret p by ��p��.

Lemma 3.1 With the previous two definitions, we get the following property for two �-formulas �� � specifying a
transition p by �� �p� �:

��p�� � modtrM �p� iff ��p�� j�tr �� �p� �

Proof: Obvious. ut

4 Observational Specification

Let us look at notions of behavioural and observational specification now. We briefly present some basic constructs
used in the majority of observational algebraic specification, see e.g. [11, 13, 14, 16].

Definition 4.1 Let � be any signature. A �-context is a �-term, which contains exactly one special variable zs for
each sort s. The variables zs are used as meta-variables for terms of a specific sort.

c�t� �� c�zs
t� for t � s

The variable zs can be substituted by t in the term c.

This shall be illustrated by a stack example.

Example 4.1 top�z� shall be a context with special variable z. Then, the equation pop�push�s� e�� � s does not
need to hold, only the application of the observational context to the equation:

top�pop�push�s� e��� � top�s�

pop�push�s� e�� and s substitute z.

In our approach, we would model push and pop as procedures, since they modify the state, here the stack. top would
be an attribute.

top�� � e� � seq�push�e��� pop��� � top�� � e

This guarantees that only observations on the state using top are relevant. This is already behaviourally oriented. We
have also defined a behavioural satisfaction for equations on state.

The standard equality can be generalised in observational approaches: two terms shall be considered equal, if they
cannot be distinguished through observations. An observational predicate Obs can be applied to any terms that denote
carriers. There is an observational subset for each carrier set. An observational �-context is a �-context with
observational sort.

7



Example 4.2 For instance top�z� would be an observational �-context, if the sort of top�t� for a suitable t is a
observational sort.

The notion of a context can also be defined for the state-based setting. A term c � T ��� X�s�S�fstateg is called
context over �, if c contains exactly one zs � Z � fzsjs � S � fstategg. A context over zs shall be called
observational, if s is not the sort state.

An observational subalgebra �A�ObsA� is the subalgebra of A that contains only those elements denotable by ground
terms defined as observable. The observational satisfaction j�OBS is defined by:

�A�ObsA� j�OBS t � t� if A j� c�t� � c�t��

for all observational contexts c. Hennicker [8, 10, 11] defines an observational predicate Obs�t� for term t � T ��� X�
which holds in a �-algebra �A�ObsA� — or �A�ObsA� j�OBS Obs�t� — if for all valuations v � X � A the inter-
pretation of t by v is element of the observational subalgebra �A�ObsA�. i.e. v��t� � ObsA. Models are consequently
defined by:

ModOBS�M� �� fA � AlgOBS��� j A j�OBS � for all � � Eg

We will present a variation of this observation predicate and observable substructures in Section 5. An implemen-
tation relation �I can be defined as usually through model class inclusion, now based on observational model class
construction:

M �I M � i� ModOBS�M
�� �ModOBS�M�

for equal signatures of M and M �.

Example 4.3 Define a specification N � h�� F i with

� �
sorts��� � fstate� elem� boolg
attr��� � ftop �� elem� is full �� boolg
tran��� � fpush � state� elem� state� pop � state� stateg

F �
�push�st� e�� top�� � e
�push�st� e��
 pop�st�� top�� � etrue

Then the specification M – as in Example 3.2 – is an implementation of N , i.e. N �I M . The specification M is more
specific since it defines the behaviour for full stacks.

We will consider implementations later on in Section 6. In order to prove correct implementations in behavioural
settings, for example context induction can be applied. The induction is based on the application of observational
contexts to ground terms, see work by Hennicker and Bidoit [10, 14] and also work on co-induction, e.g. [16].

5 Data Refinement

Our notion of satisfaction is already defined on the idea of observational behaviour (cf. Section 3). Internal properties
of the state are invisible. They can only be inspected by attributes. The notion of observation is in particular important
if implementation is taken into consideration. In implementation, concepts are realised whose properties are not
relevant with respect to some abstract specification. Still, implementations shall be considered correct if they satisfy
some abstract observational behaviour.

Considering the process of implementing and refining specifications and the necessity of proving the correctness of
those, we find that we need means to abstract from implementation details in order to prove that implementations show

8



the same observational behaviour as the specifications. We have used a very loose semantics for specifications, i.e. not
all carrier elements need to be representable by terms, i.e. are reachable. We have ignored reachability in order to obtain
a widely defined notion of models. Non-reachable elements will be accepted, since they do not influence the behaviour
of models. This allows the implementation of specifications based on libraries of existing standard implementations
(for example basic data types), which might not match specifications exactly. Due to this requirement, the very loose
semantics approach is sensible.

Example 5.1 Standard models of the data type Integer can be used to implement a specification of boolean values.
By applying an observational predicate Obs

Obsftrue�false�notgint�i�

we want to express that only the carrier elements of a carrier set Integer for sort int reachable by true, false
and not are observable. These could for example be the numbers 0 and 1. All other numbers are unreachable (with
boolean constructors), and therefore not observable.

The principle problem with models including non-reachable elements – that structural induction based on the syntactic
structure is not possible – can be countered by using the Obs predicate.

Example 5.2 With the formula

Obsftrue�false�notgint �t� � �not�not�t�� � t�

we specify that not�not�t�� � t shall only hold (and needs to be proved) in a substructure reachable with true, false
and not.

We can verify in the substructures defined through the Obs-predicate. Another use of the Obs-predicate shall be
introduced. Obs can be used to define constructors.

Example 5.3 With Obsint�zero� and Obsint�n� � Obsint�succ�n�� we define the constructors zero and succ for
natural numbers.

The term ’observational’ indicates that more than reachability is aimed at. Observability allows to relax a correctness
condition for implementations. The predicate Obs�� can be defined for every subsignature �� of �. Obs���t� shall
express that a carrier element v��ST� t� can be denoted by a ��-ground term:

Obs���t� iff �t� � T ���� � v��ST� t� � v��ST� t�� for t � s and any state ST

Since we are talking about reachability or observability in the context of sorts or specific operation symbols, we offer
three forms to describe the signature �� of the predicate Obs�� :

� �� : any subsignature �� of a given signature �,

� �s : a sort s indicating that only elements of this sort are relevant,

� �fop������opngs : a list of selected operation symbols of a given sort s.

We have seen an example of the last form – which is the most general form – in Examples 5.1 and 5.2. An example
for the second form can be found in Example 5.3.

We introduce two abbreviations. Firstly, a relativised universal quantification �x � s� Obs��x� � � or short
�x � �� � : for all elements � holds or they are not reachable, i.e., � hold for all reachable elements. Secondly, a
relativised existential quantification �x � s� Obs��x��� or short �x � �� � : there are observable element for which
� holds. With Obs�� and � � �� we model reachability.

9



Example 5.4 Consider Example 5.2. Instead of

�t � s � Obsftrue�false�notgint�t� � �not�not�t�� � t�

we would write

�t � ftrue� false� notgint � not�not�t�� � t

In other approaches, e.g. Hennicker’s work, contexts are used to defined observable constructs. Here, we use subsig-
natures.

With AObs we shall denote the observable �’-subobject for a �-object A:

a � ObsA��

s
iff �t � T ����s with a � v��ST� t� for s 
� state and any state ST

This is a standard definition based on elements reachable via ground terms of the subsignature. We construct the
observable subobject as follows:

� AObs
s �� ObsA��

s
for data sorts s � �sorts��� � fstateg�,

� AObs
state �� ObsA��

state
for sort state,

� opObsA �� opAjObs
5 for any operation op � attr��� � tran���,

� STObs �� ST for ST � AObs
state.

Lemma 5.1 The observable ��-subobject of A is a ��-object.

Proof: Follows from the definition of a �-object and observable �-subobjects. �

Satisfaction with respect to observable substructures can be expressed by:

AObs� ST j� Obs���t� iff D�ST� t� for t � T ����

Lemma 5.2 Let A be model of a specification � �� E 	 and let t be a �-term of sort s. Then:

A�ST j� Obs�� �t� iff �� � � and v��ST� t� � ObsA��

s

Proof: Follows from the definitions of the satisfaction of Obs and observable subobjects. �

In order to illustrate how to implement a data type, we use the data type set, which shall be implemented based on an
existing model of tuples. The implementation shall be formalised through model class inclusion, i.e., M � implements
M , or M �I M �, if Mod�M �� � Mod�M�. The resulting set specification will still be an abstract specification.
We will implement sets of natural numbers on tuples of integers. In the set of integers, only natural numbers shall be
observable. It shall be assumed that SET and TUPLE are generic specifications which can be instantiated with element
types such as NAT or INT.

Example 5.5

5opA
jObs

is opA restricted to the observable subsets of carrier sets.

10



spec SET(NAT) by TUPLE(INT) is
extend TUPLE(INT) by
opns

set insert: tuple � int � tuple
set delete: tuple � tuple
empty set: � tuple

axioms (t : tuple; i : int)
Obsfempty set�set insertgtuple �t� � ’set axioms’
Obsfzero�succgint�i� � ’Peano axioms’

end spec

The operations set insert and empty set shall be the constructors, i.e. they denote the same reachable carriers as
the whole set of operations of the signature. Only those set elements are observable which can be reached via ground
terms based on zero and succ. These are the natural numbers. The axioms have to hold only for them. This is of
importance if we implement on standard models of predefined types such as Integer. Obsfzero�succgint�i� holds, if
v��ST� i� is element of the subset reachable by zero and succ for any state ST . Thus, SET(NAT) by TUPLE(INT) is a
correct implementation of a specification SET(NAT) with operations set insert, set delete, empty set and the usual set
axioms and set elements which are natural numbers that obey the Peano axioms. These are still abstract specifications,
i.e., proof obligations if an executable version is derived.

The example illustrates the main application of the observability predicate: to realise a specification using another,
existing one. Examples are the realisation of boolean values on a data type integer or sets on a data type list/tuple. This
allows a developer to realise a specification based on suitable, existing library components. Typically, the boolean or
set terms (generated by their constructors) are only interpreted in subsets of the integer or list carriers, respectively.
With the Obs predicate, we can declare these subsets as observable and reason within these substructures. The tech-
nique can also be used to define export interface for existing specifications (e.g., restricting the set of constructors).

The definition of the Obs predicate has been illustrated using familiar data sort specification and implementation so
far; the sort state has been excluded. The predicate Obsstate for sort state works in the same way as Obss for data
sorts s. Applied to states it would express the reachability or observability of states, i.e., whether there is a path from
an initial state to the state under consideration.

The technique of observation-based specification can also be applied to the sort state. Instead of applying the Obs
predicate to constructors of data types such as boolean or set - as in the previous example - we can also use constructors
of sort state. Applied to the stack object that has been specified in previous examples, these constructors would be
a constant empty stack and the push and pop operations. We could realise a stack on a list object. There might
be a executable implementation for a list object specification in some component library. We assume a list object
specification with the usual operations (head, tail, a list constructor, concatenation) for this example.

Example 5.6

spec STACK by LIST is
extend LIST by
opns

empty stack: � list
push: list � elem � list
pop: list � list

axioms (l : list)
Obsfempty stack�push�popglist�l� � ’stack axioms’

end spec

The stack axioms are defined in previous examples. Again, the specification in the example formulates the proof
obligations as axioms.

11



Example 5.7 More concrete specifications could contain the following axioms:

empty stack() = empty list()
top(st) = head(st)
push(st,e) = concat(list(e),st)

This describes the implementation of stacks in terms of lists more explicitly.

6 Operation Refinement

An implementation between two specificationsM andM �,M �I M � shall be defined based on model class inclusion,
i.e. we require Mod�M �� �Mod�M�. Model class inclusion formally captures the idea of making design decisions:
there are less models if requirements are added or strengthened6. Model class inclusion guarantees that properties
established for a specification are preserved in an implementation. We have not used the ModOBS-construction intro-
duced in Section 4 here, instead we use the variant from Section 3. As we have already pointed out, this incorporates
the concept of observation. How to develop a more substantial refinement approach is described in [21]. Technical
details of this section including proofs can be found in [18].

An inference rule shall be introduced. The consequence rule helps to prove pre/postcondition specifications:

�� ��� �� �P � �� �� � �

�� � �P � ��

This rule will be useful in the definition of a constructive variant of an implementation relation, called refinement,
between specifications.

Example 6.1 Consider the following formula:

�is full��� �push�st� e�� top�� � e

Then the formula
true� �push�st� e�� top�� � e � �is empty��

is a consequence of the first formula, since top�� � e � �is empty�� � top�� � e and �is full�� � true. The
postcondition is strengthened and the precondition is weakened.

We define a few other relations between specifications. Let p�� p� be transitions with the same signature and �p� �
�p�� �p� and �p� � �p�� �p� be their respective specifications. The implementation p� �

I

tr
p� holds, if every function

interpreting p� in a �-model which satisfies �p� � �p�� �p� is also interpretation of p� in a �-model which satisfies
�p� � �p�� �p� . The implementation M� �

I M� holds iff Mod�M�� � Mod�M�� for equal signatures of M and
M �. The refinement relation p� �Rtr p� holds, if D�p���D�p�� and �p� � �p� � �p� � �p� hold. The consequence
rule and Example 6.1 illustrate this. We will assume terminating operations for this definition such that by execution
of the operations the postcondition can always be established. Let M� and M� be specifications. The refinement
relation M� �

R M� holds, if for all p � tran��M�
� the relation pM�

�R
tr

pM�
holds.

Lemma 6.1 The relations �I
tr

, �I , �R
tr

and �R form a partial ordering.

This is usually called the vertical composition property - a useful property for implementation relations.

In order to relate the two relations �I and �R , we assume the three simplifications.

6Certainly, it should be allowed to add new elements in the implementation which do not influence the semantics of the original specification.
This can be expressed by allowing the signature of M to be a subsignature of M�. In order to simplify the approach here, we have ignored this.

12



� There are no explicit invariants inv7. They will be associated to transition definitions: reformulate � � �P � �
to �� �P � � � inv.

� There are only transition specifications, i.e. box- and diamond operators and equations on sort state. Attributes
are specified by normal first-order formulas and can be treated as invariants.

� Every transition is defined by only one formula – as justified in Lemma 6.2 below.

The following lemma needs the expressiveness of the base logic as a prerequisite – this shall be assumed here. In [18]
Section 3.4, we have addressed the question of expressiveness in this context. A similar lemma can be derived for the
diamond-operator.

Lemma 6.2 Any set of formulas f�i � �P � �i j i � 	� � � � � ng can be transformed into a formula � � �P � �, which
holds iff all formulas �i � �P � �i hold.

There is a related requirement for the equational specification of hidden algebras, see [15], saying that equations on
data sorts are not allowed in that framework. Any such equation has to be asserted and proved separately.

We have already seen that the refinement is compositional, i.e., the refinement between specifications depends on the
refinement between the constituent transitions – by definition. The following lemma shows that the implementation is
compositional in the same way. Carrier sets, the state ST , and functions interpreting state observers do not need to be
considered.

Lemma 6.3 Let M��M� be specifications with sig�M�� � sig�M�� under the assumptions specified above. If for all
transitions t � tran�sig�M��� the inclusion modtrM�

�t� � modtrM�
�t� holds, then mod�M�jsig�M��� � mod�M��, or

M� �
I M�.

Now, we state the essential theorem of this section, i.e., that the refinement is a specialisation of the implementation.

Theorem 6.1 Let M��M� be specifications under the assumptions specified above. Then it holds:

M� �
R M� � M� �

I M�

The proof relies essentially on the compositionality of the underlying relations on transitions.

This theorem allows us to prove an implementation using the refinement. The refinement is a good approximation to
the implementation since the only cases excluded are

� models which contain functions which do not terminate,

� formulas (describing states) that cannot be satisfied, and

� preconditions that describe states unreachable by transitions.

The refinement is only based on two non-modal first-order implications. Standard equational reasoning can be applied
here.

7Underlying data type and attribute specifications are considered as invariant.

13



7 Related Work

Our work is clearly motivated by observational and behavioural extensions to the algebraic specification approach, in
particular by work from Bidoit, Broy, Hennicker, and Wirsing [7, 8, 9, 10, 11, 12, 13, 14]. Wirsing and Broy introduce
ultra loose semantics, allowing behavioural abstractions by a notion of relativised quantification. This compares to the
introduction of relativised quantifications �x � �� � and �x � �� � here in Section 5. Bidoit and Hennicker’s approach
is based on a partial observational equality. Our concepts are similar to ideas of using an explicit observability predicate
as presented by Hennicker in [8, 11]. We have adapted some of his ideas to the context of state-based specification
and dynamic logic. Some detailed comparisons have been made in Section 5.

Other techniques of refinement and implementation for algebraically specified systems are based on a strategy of
applying different implementation, restriction and other specificaton-building operations, see [9] Chapter 8 or [22].
We have tried to capture the idea of implementation or refinement in a single construct.

The idea of using modal logics as logics for state-based specification and implementation is not new. A few examples
include the specification language COLD [23, 24] or the Modal Action Logic [25, 26] and successive work [27, 28].
Recently, modal logics have also been used in the context of coalgebras. An example is [29], where coalgebras are
used to define the semantics for object-oriented programming supported by a modal logic. Coalgebras can gener-
alise transition systems, and modal logics are a natural choice to capture this in a logic. The approach taken by the
developers of hidden algebras [15, 16] – on which our semantical structures are based – follow the same direction.

We have used a dynamic logic, i.e., a modal logic that makes commands explicit. Modalities are indexed by commands.
Another form of modal logics – temporal logics – are also suitable for the specification and development of state-based
systems. In particular TLA (the Temporal Logic of Actions) [30, 31] offers advanced concepts for implementation
and refinement. We have chosen a dynamic logic since it provides the more adequate theory for the support of the
pre/post-condition technique.

Finally, we shall briefly address our own related work. The basic formal framework – excluding observational aspects
– is presented in [18]. Two of our papers extend the ideas of operation refinement: [21] presents refinement ideas for
the ASM (Abstract State Machines) notation, [32] is based on the idea of refinement as the matching technique for
component composition.

8 Conclusions

We have presented a framework for specifying and developing state-based systems based on the idea of behavioural
reasoning and observational implementation. In contrast to related approaches we have used a dynamic logic instead of
an equational logic. Modal logics give us more expressive power in the specification of dynamic and reactive systems.
The principle disadvantage of reasoning about implementations with the more complex modal logics is compensated
using an equationally oriented refinement notion and the definition of observable substructures. One of our objectives
is to develop an extension of the pre/post-condition technique for state-based systems, which would allow an improved
technique to be used in component-based development approaches considering non-determinism and liveness besides
the safety-specification of the classical pre- and postcondition technique. It allows us to use equational reasoning to
prove dynamic systems using a refinement inference rule a the key tool.

We have seen that a behavioural notion of implementation is needed for state-based specification where we want to
abstract from the realisation of the state itself. Observation is a useful tool in the realisation of specifications based on
existing libraries of execuatble components. Our notion of satisfaction for the modal operators and equations on the
state sort satisfy this requirement. Our data refinement notion is observational, based on the idea of relativisation.

We can specify dynamic state-based systems solely using modal constructors and equations of sort state. In most
situations implementations can be proved using the equational refinement relation. A further step in improving the
implementation of abstract specifications on predefined standard models might be using congruences to express that

14



certain elements of the implementation shall be considered equivalent, or observationally equal. Ideas from Hennicker
and Bidoit might be suitable.

References

[1] M. Wirsing. Algebraic Specification Languages. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent
Trends in Data Type Specification, 10th Workshop on Specification of Abstract Data Types, 1994, pages 81–115.
Springer-Verlag, 1995.

[2] C.A.R Hoare. An Axiomatic Basis of Computer Programming. Communications of the ACM, 12:576–580,583,
1969.

[3] K. R. Apt. Ten Years of Hoare’s Logic: A Survey – Part I. ACM Transactions on Programming Languages and
Systems, 3(4):431–483, October 1981.

[4] Object Management Group. UML 1.3 Specification, 1999. http://www.omg.org/technology/uml.

[5] Bertrand Meyer. Applying Design by Contract. Computer, pages 40–51, October 1992.

[6] G.T. Leavens and A.L. Baker. Enhancing the Pre- and Postcondition Technique for More Expressive Specifica-
tions. In R. France and B. Rumpe, editors, Proceedings 2nd Int. Conference UML’99 - The Unified Modeling
Language. Springer Verlag, LNCS 1723, 1999.

[7] M. Wirsing and M. Broy. A Modular Framework for Specification and Implementation. In J. Diaz and F. Orejas,
editors, TAPSOFT’89 Proceedings Int. Conference on Theory and Practise of Software Development, Barcelona,
Spain, pages I:42–73. Springer-Verlag, 1989.

[8] R. Hennicker. Implementation of Parameterized Observational Specifications. In J. Diaz and F. Orejas, editors,
TAPSOFT’89 Proceedings Int. Conference on Theory and Practise of Software Development, Barcelona, Spain,
pages I:290–305. Springer-Verlag, 1989.

[9] M. Wirsing. Algebraic Specification. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
Vol. B, pages 675–788. Elsevier Science Publishers, 1990.

[10] R. Hennicker. Context Induction: A Proof for Behavioural Abstractions and Algebraic Implementations. Formal
Aspects of Computing, 3:326–345, 1991.

[11] R. Hennicker. Observational Implementation of Algebraic Specifications. Acta Informatica, 28:187–230, 1991.

[12] M. Bidoit, R. Hennicker, and M. Wirsing. Characterizing Behavioural Semantics and Abstractor Semantics. In
D. Sannella, editor, Proceedings ESOP’94. Springer-Verlag, LNCS 788, 1994.

[13] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and Abstractor Semantics. Science of Computer Pro-
gramming, 25, 1995.

[14] R. Hennicker and M. Bidoit. Observational Logic. In M. Wirsing and M. Nivat, editors, Proceedings 7th Int.
Conf. on Algebraic Methodology and Software Technology, AMAST’98, pages 263–277. Springer-Verlag, LNCS
1548, 1998.

[15] J. Goguen. Hidden Algebra for Software Engineering. In Proceedings Conference on Discrete Mathematics and
Theoretical Computer Science, Auckland, New Zealand, pages 35–59. Australian Computer Science Communi-
cations, Volume 21, Number 3, 1999.

[16] J. Goguen and G. Malcolm. A Hidden Agenda. Theoretical Computer Science, 2000. Special Issue on Algebraic
Engineering .

15



[17] C. Pahl. A Model for Dynamic State-based Systems. In A.S. Evans and D.J. Duke, editors, Proc. Northern
Formal Methods Workshop, Sept.’96, Bradford, UK. Springer-Verlag, 1997.

[18] C. Pahl. A Logical Framework for Horizontal and Vertical Development in a State-based Setting. Report CA-
3499, School of Computer Applications, Dublin City University, 1999.

[19] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Vol. B, pages 789–840. Elsevier Science Publishers, 1990.

[20] C. Stirling. Modal and Temporal Logics. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of
Logic in Computer Science, Vol. II, pages 477–563. Oxford University Press, 1992.

[21] C. Pahl. Towards an Action Refinement Calculus for Abstract State Machines. In Proceedings Abstract State
Machines ASM’2000, March 2000, Monte Verita, Switzerland. 2000.

[22] H. Partsch. Specification and Transformation of Programs. Texts and Monographs in Computer Science.
Springer-Verlag, 1990.

[23] H.B.M. Jonkers. An Introduction to COLD-K. In Algebraic Methods: Theory, Tools and Applications, pages
139–206. Springer-Verlag, 1989.

[24] L.M.G. Feijs. An Overview of the Development of COLD. In D.J. Andrews, J.F. Groote, and C.A. Middel-
burg, editors, 1st International Workshop on Semantics of Specification Languages, Utrecht, 1993, pages 15–22.
Springer-Verlag, 1994.

[25] J. Fiadero and T. Maibaum. Describing, Structuring and Implementing Objects. In J.W. de Bakker, W.P. Roever,
and G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX School/Workshop, LNCS 489, pages
274–310. Springer-Verlag, 1990.

[26] J. Fiadero, T. Maibaum, and M. Ryan. Sharing Actions and Attributes in Modal Action Logic. In T. Ito and A.R.
Meyer, editors, Proceedings Conference on Theoretical Aspects of Computer Software TACS’91, Sendai, Japan.
LNCS 526, Springer-Verlag, September 1991.

[27] J.L. Fiadero and T. Maibaum. Verifying for Reuse — Foundations of Object-oriented System Verification.
Technical report, Imperial College, 1993.

[28] J. Fiadero and T. Maibaum. Interconnecting Formalisms: Supporting Modularity, Reuse, and Incrementality. In
Gail E. Kaiser, editor, Proc. ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 72–80.
ACM Software Engineering Notes 20 (4), October 1995.

[29] A. Kurz. Specifying Coalgebras with Modal Logic. In Proc. Coalgebraic Methods in Computer Science,
CMCS’98 Lisbon, Portugal. ENTCS Volume 11, 1998.

[30] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Languages and Systems,
16(3):872–923, May 1994.

[31] L. Lamport. Specifying Concurrent Systems with TLA�. In M. Broy and R. Steinbrüggen, editors, Calculational
System Design. IOS Press, Amsterdam, 1999.

[32] C. Pahl. Modal Logics for Reasoning about Object-based Component Composition. In Proc. 4rd Irish Workshop
on Formal Methods, July 2000, Maynooth, Ireland. 2000.

16


