15,314 research outputs found

    Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Trade-Offs

    Get PDF
    Frequency restoration in power systems is conventionally performed by broadcasting a centralized signal to local controllers. As a result of the energy transition, technological advances, and the scientific interest in distributed control and optimization methods, a plethora of distributed frequency control strategies have been proposed recently that rely on communication amongst local controllers. In this paper we propose a fully decentralized leaky integral controller for frequency restoration that is derived from a classic lag element. We study steady-state, asymptotic optimality, nominal stability, input-to-state stability, noise rejection, transient performance, and robustness properties of this controller in closed loop with a nonlinear and multivariable power system model. We demonstrate that the leaky integral controller can strike an acceptable trade-off between performance and robustness as well as between asymptotic disturbance rejection and transient convergence rate by tuning its DC gain and time constant. We compare our findings to conventional decentralized integral control and distributed-averaging-based integral control in theory and simulations

    Spatial Multiplexing of QPSK Signals with a Single Radio: Antenna Design and Over-the-Air Experiments

    Full text link
    The paper describes the implementation and performance analysis of the first fully-operational beam-space MIMO antenna for the spatial multiplexing of two QPSK streams. The antenna is composed of a planar three-port radiator with two varactor diodes terminating the passive ports. Pattern reconfiguration is used to encode the MIMO information onto orthogonal virtual basis patterns in the far-field. A measurement campaign was conducted to compare the performance of the beam-space MIMO system with a conventional 2-by-?2 MIMO system under realistic propagation conditions. Propagation measurements were conducted for both systems and the mutual information and symbol error rates were estimated from Monte-Carlo simulations over the measured channel matrices. The results show the beam-space MIMO system and the conventional MIMO system exhibit similar finite-constellation capacity and error performance in NLOS scenarios when there is sufficient scattering in the channel. In comparison, in LOS channels, the capacity performance is observed to depend on the relative polarization of the receiving antennas.Comment: 31 pages, 23 figure

    Adaptive Capacity Management in Bluetooth Networks

    Get PDF
    • …
    corecore