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Robust Decentralized Secondary Frequency
Control in Power Systems: Merits and Tradeoffs
Erik Weitenberg , Yan Jiang , Changhong Zhao , Member, IEEE, Enrique Mallada , Member, IEEE,

Claudio De Persis , and Florian Dörfler

Abstract—Frequency restoration in power systems is
conventionally performed by broadcasting a centralized sig-
nal to local controllers. As a result of energy transition, tech-
nological advances, and scientific interest in distributed
control and optimization methods, a plethora of distributed
frequency control strategies have been proposed recently,
which rely on communication amongst local controllers. In
this paper, we propose a fully decentralized leaky integral
controller for frequency restoration, which is derived from a
classic lag element. We study steady-state, asymptotic opti-
mality, nominal stability, input-to-state stability, noise rejec-
tion, transient performance, and robustness properties of
this controller in closed loop with a nonlinear and multivari-
able power system model. We demonstrate that the leaky in-
tegral controller can strike an acceptable tradeoff between
performance and robustness as well as between asymp-
totic disturbance rejection and transient convergence rate
by tuning its dc gain and time constant. We compare our
findings to conventional decentralized integral control and
distributed-averaging-based integral control in theory and
simulations.

Index Terms—Decentralized control, power generation
control, power system stability.
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I. INTRODUCTION

THE core operation principle of an ac power system is to
balance supply and demand in approximately real time.

Any instantaneous imbalance results in a deviation of global
system frequency from its nominal value. Thus, a central con-
trol task is to regulate the frequency in an economically ef-
ficient way and despite fluctuating loads, variable generation,
and possibly faults. Frequency control is conventionally per-
formed in a hierarchical architecture: The foundation is made
of the generators’ rotational inertia providing an instantaneous
frequency response, and three control layers—primary (droop),
secondary automatic generation (AGC), and tertiary (economic
dispatch)—operate at different time scales on top of it [1], [2].
Conventionally, droop controllers are installed at synchronous
machines and operate fully decentralized, but they cannot by
themselves restore the system frequency to its nominal value.
To ensure a correct steady-state frequency and a fair power shar-
ing among generators, centralized AGC and economic dispatch
schemes are employed on longer time scales.

This conventional operational strategy is currently challenged
by increasing volatility on all time scales (due to variable re-
newable generation and increasing penetration of low-inertia
sources) as well as the ever-growing complexity of power sys-
tems integrating distributed generation, demand response, mi-
crogrids, HVdc systems, etc. Motivated by these paradigm shifts
and recent advances in distributed control and optimization, an
active research area has emerged developing more flexible dis-
tributed schemes to replace or complement the traditional fre-
quency control layers.

In this paper, we focus on secondary control. We refer to [3,
Section IV-C] for a survey covering recent approaches amongst
which we highlight semicentralized broadcast-based schemes
similar to AGC [4]–[6] and also highlight distributed schemes
based on consensus-based averaging [7]–[12] or primal dual
methods [13]–[16], which all rely on communication amongst
controllers. However, because of security, robustness, and eco-
nomic concerns it is desirable to regulate the frequency without
relying on communication. A seemingly obvious and often ad-
vocated solution is to complement local proportional droop con-
trol with decentralized integral control [5], [7], [17]. In theory,
such schemes ensure nominal and global closed-loop stability at
a correct steady-state frequency, though in practice they suffer
from poor robustness to measurement bias and clock drifts [4],
[5], [11], [18]. Furthermore, the power injections resulting from
decentralized integral control generally do not lead to an effi-
cient allocation of generation resources. A conventional remedy
to overcome performance and robustness issues of integral con-
trollers is to implement them as lag elements with finite dc gain
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[19]. Indeed, such decentralized lag element approaches have
been investigated by practitioners: Ainsworth and Grijalva [17]
provides insights on the closed-loop steady-states and transient
dynamics based on numerical analysis and asymptotic argu-
ments, Heidari et al. [20] provides a numerical certificate for
ultimate boundedness, and Han et al. [21] analyzes lead-lag
filters based on a numerical small-signal analysis.

Here, we follow the latter approach and propose a fully de-
centralized leaky integral controller derived from a standard lag
element. We consider this controller in feedback with a nonlin-
ear and multivariable multimachine power system model and
provide a formal analysis of the closed-loop system concerning
the following:

1) steady-state frequency regulation, power sharing, and dis-
patch properties;

2) the transient dynamics in terms of nominal exponential
stability and input-to-state stability with respect to disturbances
affecting the dynamics and controller;

3) the dynamic performance as measured by the H2 norm.
All of these properties are characterized by precisely quan-

tifiable tradeoffs—dynamic versus steady-state performance as
well as nominal versus robust performance—that can be set by
tuning the dc gain and time constant of our proposed controller.
We compare our findings with the corresponding properties of
decentralized integral control, and we illustrate our analytical
findings with a detailed simulation study based on the IEEE
39-bus power system. We find that our proposed fully decen-
tralized leaky integral controller is able to strike an acceptable
tradeoff between dynamic and steady-state performance and
can compete with other communication-based distributed con-
trollers.

The remainder of this paper is organized as follows.
Section II lays out the problem setup in power system frequency
control. Section III discusses the pros and cons of decentral-
ized integral control and proposes the leaky integral controller.
Section IV analyzes the steady-state, stability, robustness, and
optimality properties of this leaky integral controller. Section V
illustrates our results in a numerical case study. Finally,
Section VI summarizes and discusses our findings.

Key to the analysis of part of the results in this paper (see
Section IV-B) is a strict Lyapunov function. A first attempt to
arrive at one was made in preliminary work [7]. The current
paper is substantially different from [7], as it establishes several
novel and stronger results; provides additional context, motiva-
tion, and possible implications; and discusses the tradeoffs that
arise from the tunable controller parameters.

II. POWER SYSTEM FREQUENCY CONTROL

A. System Model

Consider a lossless, connected, and network-reduced power
system with n generators modeled by the swing equations [1]

θ̇ = ω (1a)

Mω̇ = − Dω + P ∗ − ∇U(θ) + u (1b)

where θ ∈ Tn and ω ∈ Rn are the generator rotor angles and
frequencies relative to the utility frequency given by 2π50 or
2π60 Hz. The diagonal matrices M,D ∈ Rn×n collect the in-
ertia and damping coefficients Mi,Di > 0, respectively. The
generator primary (droop) control is integrated in the damping
coefficient Di , P ∗ ∈ Rn is vector of net power injections (local

generation minus local load in the reduced model), and u ∈ Rn

is a control input to be designed later. Finally, the magnetic en-
ergy stored in the purely inductive (lossless) power transmission
lines is (up to a constant) given by

U(θ) = −1
2

n∑

i,j=1

BijViVj cos (θi − θj )

where Bij ≥ 0 is the susceptance of the line connecting genera-
tors i and j with terminal voltage magnitudes Vi, Vj > 0, which
are assumed to be constant.

Observe that the vector of power injections

(∇U(θ))i =
n∑

j=1

BijViVj sin (θi − θj ) (2)

satisfies a zero net power flow balance: 1T
n ∇U(θ) = 0, where

1n ∈ Rn is the vector of unit entries. In what follows, we also
write these quantities in compact notation as

U(θ) = −1TΓ cos (BTθ), ∇U(θ) = BΓ sin (BTθ)

where B ∈ Rn×m is the incidence matrix [22] of the power
transmission grid connecting the n generators with m trans-
mission lines, and Γ ∈ Rm×m is the diagonal matrix with its
diagonal entries being all the nonzero ViVjBij s corresponding
to the susceptance and voltage.

We note that all our subsequent developments can also be ex-
tended to more detailed structure-preserving models with first-
order dynamics (e.g., due to power converters), algebraic load
flow equations, and variable voltages by using the techniques
developed in [7] and [9]. In the interest of clarity, we present
our ideas for the concise albeit stylized model (1).

B. Secondary Frequency Control

In what follows, we refer to a solution [θ(t), ω(t)] of (1) as a
synchronous solution if it is of the form θ̇(t) = ω(t) = ωsync1n ,
where ωsync is the synchronous frequency.

Lemma 1 (Synchronization frequency): If there is a syn-
chronous solution to the power system model (1), then the syn-
chronous frequency is given by

ωsync =
∑n

i=1P
∗
i +

∑n
i=1u

∗
i∑n

i=1Di
(3)

where u∗
i denotes the steady-state control action.

Proof: In the synchronized case, (1b) reduces to Dωsync1n +
∇U(θ) = P ∗ + u. After multiplying this equation by 1T

n and
using 1T

n ∇U(θ) = 0, we arrive at the claim (3). �
Observe from (3) that ωsync = 0 if and only if all injec-

tions are balanced:
∑n

i=1 P ∗
i + u∗

i = 0. In this case, a syn-
chronous solution coincides with equilibrium (θ∗, ω∗, u∗) ∈
Tn × {0n} × Rn of (1). Our first objective is frequency regu-
lation, also referred to as secondary frequency control.

Problem 1 (Frequency restoration): Given an unknown con-
stant vector P ∗, we design a control strategy u = u(ω) to stabi-
lize the power system model (1) to an equilibrium (θ∗, ω∗, u∗) ∈
Tn × {0n} × Rn so that

∑n
i=1 P ∗

i + u∗
i = 0.

Observe that there are manifold choices of u∗ to achieve this
task. Thus, a further objective is the most economic allocation of
steady-state control inputs u∗ given by a solution to the following
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optimal dispatch problem:

minimizeu∈Rn

n∑

i=1

aiu
2
i (4a)

subject to
n∑

i=1

P ∗
i +

n∑

i=1

ui = 0 . (4b)

The term aiu
2
i with ai > 0 is the quadratic generation cost

for generator i. Observe that the unique minimizer u� of the
linearly constrained quadratic program (4) guarantees identical
marginal costs at optimality [8], [10] as

aiu
�
i = aju

�
j ∀i, j ∈ {1, . . . , n} . (5)

We remark that a special case of the identical marginal cost
criterion (5) is fair proportional power sharing [23] when the
coefficients ai are chosen inversely to a reference power P̄i > 0
(normally the power rating) for every generator i given by

u�
i /P̄i = u�

j /P̄j ∀i, j ∈ {1, . . . , n} . (6)

The optimal dispatch problem (4) also captures the core ob-
jective of the so-called economic dispatch problem [24], and
it is also known as the base point and participation factors
method [24, Ch. 3.8].

Problem 2 (Optimal frequency restoration): Given an un-
known constant vector P ∗, we design a control strategy u =
u(ω) to stabilize the power system model (1) to an equilib-
rium (θ∗, ω∗, u∗) ∈ Tn × {0n} × Rn where u∗ minimizes the
optimal dispatch problem (4).

Besides steady-state optimal frequency regulation, we will
also pursue certain robustness and transient performance char-
acteristics of the closed loop that we specify later.

III. FULLY DECENTRALIZED FREQUENCY CONTROL

The frequency-regulation Problems 1 and 2 have seen many
centralized and distributed control approaches. Since P ∗ is gen-
erally unknown, all approaches explicitly or implicitly rely on
integral control of the frequency error. In the following, we fo-
cus on fully decentralized integral control approaches making
use only of local frequency measurements: ui = ui(ωi).

A. Decentralized Pure Integral Control

One possible control action is decentralized pure integral
control of the locally measured frequency, i.e.,

u = − p (7a)

T ṗ = ω (7b)

where p ∈ Rn is an auxiliary local control variable, and T ∈
Rn×n is a diagonal matrix of positive time constants Ti > 0. The
closed-loop system (1), (7) enjoys many favorable properties,
such as solving the frequency-regulation Problem 1 with global
convergence guarantees regardless of the system or controller
initial conditions or the unknown vector P ∗.

Theorem 2 (Convergence under decentralized pure integral
control): The closed-loop system (1), (7) has a nonempty
set X∗ ⊆ Tn × {0n} × Rn of equilibria, and all trajectories
[θ(t), ω(t), p(t)] globally converge to X∗ as t → +∞.

Proof: This proof is based on an idea initially proposed in [7]
while we make some arguments and derivations more rigorous

here. First, note that (7) can be explicitly integrated as

u = −T−1(θ − θ0) − p0 = −T−1(θ − θ′0) (8)

where we used θ′0 = θ0 − Tp0 as a shorthand. In what follows,
we study only the state [θ(t), ω(t)] without p(t) since p(t) is a
function of θ(t) and initial conditions as defined in (8).

Next, consider the LaSalle function

V(θ, ω) =
1
2
ωTMω + U(θ) − θTP ∗

+
1
2
(θ − θ′0)

TT−1(θ − θ′0). (9)

The derivative of V along any trajectory of (1), (7) is

V̇(θ, ω) = −ωTDω . (10)

Note that for any initial condition (θ0 , ω0) ∈ Tn × Rn , the sub-
level set Ω := {(θ, ω) | V(θ, ω) ≤ V(θ0 , ω0)} is compact. In-
deed, Ω is closed because of continuity of V and bounded since
V is radially unbounded because of quadratic terms in ω and θ.
The set Ω is also forward invariant since V̇ ≤ 0 by (10).

In order to proceed, we define the zero-dissipation set as

E =
{

(θ, ω) | V̇(θ, ω) = 0
}

= {(θ, ω) | ω = 0n} (11)

and EΩ := E ∩ Ω. By LaSalle’s theorem [25, Th. 4.4], as t →
+∞, [θ(t), ω(t)] converges to a nonempty, compact, invariant
set LΩ , which is a subset of EΩ . In the following, we show that
any point (θ′, ω′) ∈ LΩ is an equilibrium of (1), (7). Owing to
the invariance of LΩ , the trajectory [θ(t), ω(t)] starting from
(θ′, ω′) stays identically in LΩ and thus in EΩ . Therefore, by
(11) we have ω(t) ≡ 0 and hence ω̇(t) ≡ 0. Thus, every point
on this trajectory, in particular the starting point (θ′, ω′), is an
equilibrium of (1), (7). �

The astonishing global convergence merit of decentralized
integral control comes at a cost though. First, note that the
steady-state injections from decentralized integral control (7)

u∗ = −T−1 (θ∗ − θ0) − p0

depend on initial conditions and the unknown values of P ∗.
Thus, in general, u∗ does not meet the optimality criterion (5).
Second and more importantly, internal instability due to decen-
tralized integrators is a known phenomenon in control systems
[26], [27]. In this particular scenario, as shown in [11, Th. 1]
and [4, Proposition 1], the decentralized integral controller (7)
is not robust to arbitrarily small biased measurement errors that
may arise, e.g., due to clock drifts [18]. More precisely, the
closed-loop system consisting of (1) and the integral controller
subject to measurement bias η ∈ Rn

u = − p (12a)

T ṗ = ω + η , (12b)

does not admit any synchronous solution unless η ∈ span(1n ),
that is, all biases ηi , for all i ∈ {1, . . . , n}, are perfectly iden-
tical [4, Proposition 1]. Thus, while theoretically favorable, the
decentralized integral controller (7) is not practical.

B. Decentralized Lag and Leaky Integral Control

In standard frequency-domain control design [19] a stable
and finite dc-gain implementation of a proportional-integral (PI)
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controller is given by a lag element parameterized as

α
Ts + 1
αTs + 1

= 1︸︷︷︸
proportional control

+
α − 1

αTs + 1︸ ︷︷ ︸
leaky integral control

where T > 0 and α � 1. The lag element consists of a propor-
tional channel as well as a first-order lag often referred to as a
leaky integrator. In our context, a state-space realization of a
decentralized lag element for frequency control is given by

u = − ω − (α − 1)p

αT ṗ = ω − p

where T is a diagonal matrix of time constants, and α � 1 is
scalar. In what follows, we disregard the proportional channel
(that would add further droop) and focus on the leaky integrator
to remedy the shortcomings of pure integral control (7).

Consider the leaky integral controller

u = − p (13a)

T ṗ = ω − K p (13b)

where K,T ∈ Rn×n are diagonal matrices of positive control
gains Ki, Ti > 0. The transfer function of the leaky integral
controller (13) at a node i (from ωi to −ui) is given by

Ki(s) =
1

Tis + Ki
=

K−1
i

(Ti/Ki) · s + 1
(14)

i.e., the leaky integrator is a first-order lag with dc gain K−1
i

and bandwidth Ki/Ti . It is instructive to consider the following
limiting values for the gains.

1) For Ti ↘ 0, leaky integral control (13) reduces to pro-
portional (droop) control with gain K−1

i .
2) For Ki ↘ 0, we recover the pure integral control (7).
3) For Ki ↗ ∞ or Ti ↗ ∞, we obtain an open-loop system

without control action.
Thus, from a loop-shaping perspective for open-loop sta-

ble single-input-single-output (SISO) systems, we expect good
steady-state frequency regulation for a large dc gain K−1

i , and a
large (respectively, small) cut-off frequency Ki/Ti likely results
in good nominal transient performance (respectively, good noise
rejection). We will confirm these intuitions in the next section,
where we analyze the leaky integrator (13) in closed loop with
the nonlinear and multivariable power system (1) and highlight
its merits and tradeoffs as function of the gains K and T .

IV. PROPERTIES OF THE LEAKY INTEGRAL CONTROLLER

The power system model (1) controlled by the leaky integrator
(13) gives rise to the closed-loop system

θ̇ = ω (15a)

Mω̇ = − Dω + P ∗ − ∇U(θ) − p (15b)

T ṗ = ω − K p . (15c)

We make the following standing assumption on this system.
Assumption 1 (Existence of a synchronous solution): As-

sume that the closed-loop (15) admits a synchronous solution

(θ∗, ω∗, p∗) of the form

θ̇∗ = ω∗ (16a)

0n = − Dω∗ + P ∗ − ∇U(θ∗) − p∗ (16b)

0n = ω∗ − K p∗ (16c)

where ω∗ = ωsync1n for some ωsync ∈ R. �
By eliminating the variable p∗ from (16), we arrive at

P ∗ − (D + K−1)ωsync1n = ∇U(θ∗) . (17)

Equation (17) takes the form of lossless active power flow equa-
tions [1] with injections P ∗ − (D + K−1)ωsync1n . Thus, As-
sumption 1 is equivalent to assuming feasibility of the power
flow (17), which is always true for sufficiently small ‖P ∗‖.

Under this assumption, we now show various properties of
the closed-loop system (15) under leaky integral control (13).

A. Steady-State Analysis

We begin our analysis by studying the steady-state character-
istics. At a steady state, the control input u∗ takes the value

u∗ = −p∗ = −K−1ω∗ = −K−1ωsync1n (18)

that is, it has a finite dc gain K−1 similar to a primary droop
control. The following result is analogous to Lemma 1.

Lemma 3 (Steady-state frequency): Consider the closed-
loop system (15) and its equilibria (16). The explicit synchro-
nization frequency is given by

ωsync =
∑n

i=1 P ∗
i∑n

i=1 Di + K−1
i

. (19)

Unsurprisingly, the leaky integral controller (13) does not
generally regulate the synchronous frequency ωsync to zero un-
less

∑
i P ∗

i = 0. However, it can achieve approximate frequency
regulation within a prespecified tolerance band.

Corollary 4 (Banded frequency restoration): Consider the
closed-loop system (15). The synchronous frequency ωsync takes
a value in a band around zero, which can be made arbitrarily
small by choosing the gains Ki > 0 sufficiently small. In par-
ticular, for any ε > 0, if

n∑

i=1

K−1
i ≥ |∑n

i=1 P ∗
i |

ε
−

n∑

i=1

Di (20)

then |ωsync| ≤ ε.
While regulating the frequencies to a narrow band is suf-

ficient in practical applications, the closed-loop performance
may suffer since the control input (13) may become ineffective
because of a small bandwidth Ki/Ti . Similar observations have
also been made in [17] and [20]. We will repeatedly encounter
this tradeoff for the decentralized leaky integral controller (13)
between choosing a small gain K (for desirable steady-state
properties) and large gain (for transient performance).

The closed-loop steady-state injections are given by (18), and
we conclude that the leaky integral controller achieves propor-
tional power-sharing by tuning its gains appropriately.

Corollary 5 (Steady-state power-sharing): Consider the
closed-loop system (15). The steady-state injections u∗ of the
leaky integral controller achieve fair proportional power-sharing
as follows:

Kiu
∗
i = Kju

∗
j ∀i, j ∈ {1, . . . , n} . (21)
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Hence, arbitrary power-sharing ratios, as in (6), can be pre-
scribed by choosing the control gains as Ki ∼ 1/P̄i . Similarly,
we have the following result on steady-state optimality.

Corollary 6 (Steady-state optimality): Consider the closed-
loop system (15). The steady-state injections u∗ of the leaky
integral controller minimize the optimal dispatch problem as
follows:

minimizeu∈Rn

n∑

i=1

Kiu
2
i (22a)

subject to
n∑

i=1

P ∗
i +

n∑

i=1

(1 + DiKi)ui = 0 . (22b)

Proof: Observe from (21) that the steady-state injections (18)
meet the identical marginal cost requirement (5) with ai = Ki .
Additionally, the steady-state equations (16b), (16c), and (18)
can be merged to the expression

0n = DK u∗ + P ∗ − ∇U(θ∗) + u∗ .

By multiplying the left-hand side of this equation by 1T
n , we ar-

rive at condition (22b). Hence, the injections u∗ are also feasible
for (22) and thus optimal for program (22). �

The steady-state injections of the leaky integrator are opti-
mal for the modified dispatch problem (22) with appropriately
chosen cost functions. From (22b), the leaky integrator does not
achieve perfect power balancing

∑n
i=1 P ∗

i + u∗
i = 0 and under-

estimates the net load, but it can satisfy the power balance (4b)
arbitrarily well for K chosen sufficiently small. Note that in
practice, the control gain K cannot be chosen arbitrarily small
to avoid ineffective control and the shortcomings of the decen-
tralized integrator (7) (lack of robustness and power sharing).
The following sections will make these ideas precise from the
perspectives of stability, robustness, and optimality.

B. Stability Analysis

For ease of analysis, in this section, we introduce a change
of coordinates for the voltage phase angle θ. Let δ = θ −
1
n 1n1

T
nθ = Πθ be the center-of-inertia coordinates (see e.g.,

[28], [9]), where Π = I − 1
n 1n1

T
n . In these coordinates, the

open-loop system (1) becomes

δ̇ = Πω (23a)

Mω̇ = −Dω + P ∗ − ∇U(δ) + u (23b)

where by an abuse of notation we use the same symbol U for
the potential function expressed in terms of δ

U(δ) = −1TΓ cos (BTδ), ∇U(δ) = BΓ sin (BTδ).

Note that BTΠ = BT since BT1n = 0n [22]. The synchronous
solution (θ∗, ω∗, p∗)1 defined in (16) is mapped into the point
(δ∗, ω∗, p∗), with δ∗ = Πθ∗, satisfying conditions

δ̇∗ = 0n (24a)

0n = −Dω∗ + P ∗ − ∇U(δ∗) − p∗ (24b)

0n = ω∗ − K p∗. (24c)

1Of course, care must be taken when interpreting the results in this section
since the steady-state itself depends on the controller gain K (see Section IV-A).
Here we are merely interested in the stability relative to the equilibrium.

The existence of (δ∗, ω∗, p∗) is guaranteed by Assumption 1.
Additionally, we make the following standard assumption con-
straining steady-state angle differences.

Assumption 2 (Security constraint): The synchronous solu-
tion (24) is such that BTδ∗ ∈ Θ := (− π

2 + ρ, π
2 − ρ)m for a

constant scalar ρ ∈ (0, π
2 ).

Remark 1: Compared with the conventional security con-
straint assumption [8], we introduce an extra margin ρ on the
constraint to be able to explicitly quantify the decay of the Lya-
punov function we use in proofs of Theorems 7 and 8. �

By using Lyapunov techniques following [12], it is possi-
ble to show that the leaky integral controller (13) guarantees
exponential stability of the synchronous solution (24).

Theorem 7 (Exponential stability under leaky integral con-
trol): Consider the closed-loop system (13) and (23). Let As-
sumptions 1 and 2 hold true. The equilibrium (δ∗, ω∗, p∗) is
locally exponentially stable. In particular, given the incremental
state

x = x(δ, ω, p) = col(δ − δ∗, ω − ω∗, p − p∗) (25)

the solutions x(t) = col(δ(t) − δ∗, ω(t) − ω∗, p(t) − p∗), with
[δ(t), ω(t), p(t)] a solution to (13) and (23) that starts sufficiently
close to the origin satisfy for all t ≥ 0,

‖x(t)‖2 ≤ λe−αt‖x0‖2 (26)

where λ and α are positive constants. In particular, when mul-
tiplying the gains K and T by the positive scalars κ and τ ,
respectively, α is monotonically nondecreasing as a function of
the gain κ and nonincreasing as a function of τ .

Proof: Consider the incremental Lyapunov function from
[12], including a cross term between potential and kinetic ener-
gies, as

V (x) =
1
2
(ω − ω∗)TM(ω − ω∗)

+ U(δ) − U(δ∗) −∇U(δ∗)T(δ − δ∗)

+
1
2
(p − p∗)TT (p − p∗)

+ ε(∇U(δ) −∇U(δ∗))TMω (27)

where ε ∈ R is a small positive parameter.
First, we will show that this is indeed a valid Lyapunov func-

tion, by proving positivity outside of the origin and strict nega-
tivity of its time derivative along the solutions of (23).

For sufficiently small values of ε and if Assumption 2 holds,
V (x) satisfies condition

β1‖x‖2 ≤ V (x) ≤ β2‖x‖2 (28)

for some β1 , β2 > 0 and for all x with BTδ ∈ Θ, by Lemma 14
in Appendix A. The derivative of V (x) can be expressed as

V̇ (x) = −χTH(δ)χ

where χ(δ, ω, p) := col(∇U(δ) −∇U(δ∗), ω − ω∗, p − p∗)

H(δ) =

⎡

⎢⎣
εI 1

2 εD − 1
2 εI

1
2 εD D − εE(δ) 0n×n

− 1
2 εI 0n×n K

⎤

⎥⎦ (29)

and we defined the shorthand E(δ) = symm(M∇2U(δ)) with
symm(A) = 1

2 (A + AT).
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We claim that for all δ, H(δ) > 0. To see this, apply
Lemma 12 from Appendix A to obtain H(δ) ≥ H ′(δ) with

H ′(δ) :=

⎡

⎢⎣

ε
2 I 0n×n 0n×n

0n×n D − ε(E(δ) + D2) 0n×n

0n×n 0n×n K − εI

⎤

⎥⎦.

Given that D and K are positive-definite matrices, one can select
ε to be positive yet sufficiently small so that H ′(δ) > 0.

To show exponential decline of the Lyapunov function V (x),
which is necessary for proving (26), we must find some positive
constant α such that V̇ (x) ≤ −αV (x).

We claim that a positive constant β3 , dependent on ρ from
Assumption 2, exists such that ‖χ‖2 ≥ β3‖x‖2 . To see this, we
note from Lemma 13 in Appendix A that a constant β′

3 exists so
that

‖∇U(δ) −∇U(δ̄)‖2 ≤ β′
3‖δ − δ∗‖2 . (30)

The claim then follows with β3 = min(1, β′
3
−1).

In order to proceed, we set β4 := minBTδ∈Θ λmin(H(δ)).
Then, using (28), it follows that as far as BTδ ∈ Θ

V̇ (x) ≤ −β4‖χ‖2 ≤ −β3β4‖x‖2 ≤ −β3β4

β2
V =: −αV (x) .

For this inequality to lead to the claimed exponential stability,
we must guarantee that the solutions do not leave Θ. To do so,
we study the sublevel sets of V (x) and find one that is con-
tained in Θ. Recall that the sublevel sets of V (x) are invariant
and thus solutions x(t) are bounded for all t ≥ 0 in sublevel
sets {x : V (x) ≤ V (x0)} for which BTδ ∈ Θ. Hence, we re-
quire the initial conditions x0 of solutions x(t) to be within a
suitable sublevel set {x : V (x) ≤ V (x0)} where BTδ ∈ Θ. We
now construct such a sublevel set. Let

c := β1
ξ2

λmax(BBT)
(31)

where ξ > 0 is a parameter with the property that any δ sat-
isfying ‖BTδ − BTδ∗‖ ≤ ξ also satisfies BTδ ∈ Θ. The param-
eter ξ exists because BTδ∗ ∈ Θ, and Θ is an open set. Ac-
cordingly, define the sublevel set Ωc := {x : V (x) ≤ c}, with c
defined above, and note that any point in Ωc satisfies BTδ ∈ Θ.
As a matter of fact V (x) ≤ c implies ‖x‖2 ≤ ξ 2

λm a x (BBT) and

therefore ‖δ − δ∗‖2 ≤ ξ 2

λm a x (BBT) . This, in turn, implies that

‖BT(δ − δ∗)‖2 ≤ ξ2 , and hence BTδ ∈ Θ by the choice of ξ.
We conclude that any solution issuing from the sublevel set

Ωc will remain inside of it. Hence, along these solutions, the
inequality V̇ (x) ≤ −αV (x) always holds true.

By the comparison lemma [25, Lemma B.2], this inequality
yields V (x(t)) ≤ e−αtV (x(0)), which we combine again with
(28) to arrive at (26) with λ = β2/β1 .

Finally, we address the effect of K and T on α by introducing
the scalar factors κ and τ multiplying K and T , and by studying
the effect of manipulations of κ and τ on the exponential decline
of V (x) and, therefore, of x(t). Note that α is a monotonically
increasing function of β4 = minBTδ∈Θ λmin(H(δ)). Recall that
for any vector z, we have

λmin(H(δ))‖z‖2 ≤ zTH(δ)z

with equality if z is the eigenvector corresponding to λmin
(H(δ)). Let emin denote the normalized eigenvector correspond-

ing to λmin(H(δ)). Then, for any vector z satisfying ‖z‖ = 1,
λmin(H(δ)) = eT

minH(δ)emin ≤ zTH(δ)z. Hence, we have

β4 = min
BTδ∈Θ

λmin(H(δ)) = minBTδ∈Θ , z :‖z‖=1 zTH(δ)z

where the last equality holds by noting that emin is one of the
vectors z at which the minimum is attained.

Now, suppose we multiply K by a factor κ > 1. Let H ′(δ) =
H(δ) + block diag(0, 0, (κ − 1)K). The new value of β4 is
given by

β′
4 = min

BTδ∈Θ , z :‖z‖=1

(
zTH(δ)z +

∑n

i=1
(κ − 1)Kiz

2
2n+i

)

︸ ︷︷ ︸
=zTH ′(δ)z

.

The argument of the minimization is not smaller than zTH(δ)
z for any z. It follows that β′

4 ≥ minBTδ∈Θ ,z :‖z‖=1 zTH(δ)z =
β4 . Similarly, if 0 < κ < 1, then β′

4 ≤ minBTδ∈Θ ,z :‖z‖=1 zTH

(δ)z = β4 . Hence, β4 is a monotonically nondecreasing func-
tion of gain κ. Likewise, α is a monotonically decreasing func-
tion of β2 , which itself is a nondecreasing function of τ . �

Theorem 7 is in line with the loop-shaping insight that the
bandwidth Ki/Ti determines nominal performance: The decay
rate α is monotonically nondecreasing in Ki/Ti .

C. Robustness Analysis

We now depart from nominal performance and focus on ro-
bustness. Recall a key disadvantage of pure integral control: It
is not robust to biased measurement errors of the form (12).
We now show that leaky integral control (13) is robust to such
measurement errors. In what follows, instead of (13), consider
leaky integral control subjected to the following measurement
errors

u = −p (32a)

T ṗ = ω − K p + η (32b)

where the measurement noise η = η(t) ∈ Rn is assumed to be
an ∞-norm bounded disturbance. In this case, the bias-induced
instability (see Section III-A) does not occur.

Let us first offer a qualitative steady-state analysis. For a
constant vector η, the equilibrium equation (16c) becomes

0n = ω∗ − K p∗ + η

so that the closed loop (1), (32) will admit synchronous equi-
libria. Indeed, the governing equations (17) determining the
synchronous frequency ωsync rewritten as

(D + K−1)ωsync1 = P ∗ − ∇U(θ∗) − K−1η .

Observe that the noise terms η now take the same role as
the constant injections P ∗, and their effect can be made ar-
bitrarily small by increasing K. We now make this qualitative
steady-state reasoning more precise and derive a robustness cri-
terion by means of the same Lyapunov approach used to prove
Theorem 7. We take the measurement error η as disturbance
input and quantify its effect on the convergence behavior along
the lines of input-to-state stability. First, we define the specific
robust stability criterion that we will use, adapted from [29].

Definition 1 (Input-to-state-stability with restrictions): A
system ẋ = f(x, η) is said to be input-to-state stable (ISS) with
restriction X on x(0) = x0 and restriction η ∈ R>0 on η(·) if
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there exist a class KL-function β and a class K∞-function γ
such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖η(·)‖∞)

for all t ∈ R≥0 , x0 ∈ X , and inputs η(·) ∈ Ln
∞ satisfying

‖η(·)‖∞ := ess sup
t∈R≥0

‖η(t)‖ ≤ η.

Theorem 8 (ISS under biased leaky integral control):
Consider system (23) in a closed loop with the biased leaky in-
tegral controller (32). Let Assumptions 1 and 2 hold true. Given
a diagonal matrix K > 0, there exist a positive constant η and
a set X such that the closed-loop system is ISS from the noise
η to the state x = col(δ − δ∗, ω − ω∗, p − p∗) with restrictions
X on x0 and η on η(·), where (δ∗, ω∗, p∗) is the equilibrium
of the nominal system, i.e., with η = 0. In particular, the
solutions x(t) = col(δ(t) − δ∗, ω(t) − ω∗, p(t) − p∗), with
(δ(t), ω(t), p(t)) a solution to (23), (32) for which x(0) ∈ X
and ‖η(·)‖∞ ≤ η are satisfied for all t ∈ R≥0 , are given by

‖x(t)‖2 ≤ λe−α̂ t‖x(0)‖2 + γ‖η(·)‖2
∞ (33)

where α̂, λ, and γ are positive constants. Furthermore, when
multiplying the gains K and T by the positive scalars κ and τ ,
respectively, then γ is monotonically decreasing (respectively,
nonincreasing) as a function of κ (respectively, τ ), and α̂ is
monotonically nondecreasing as a function of κ and nonin-
creasing as a function of τ .

Proof: We start by extending the Lyapunov arguments from
the proof of Theorem 7 to take the noise η(t) into account,
obtaining again an upper bound of V̇ (x) in terms of V (x).

From the proof of Theorem 7 recall the Lyapunov func-
tion derivative V̇ (x) = −χTH(δ)χ − (p − p∗)Tη. Since for any
positive parameter μ we have

−(p − p∗)Tη ≤ μ‖p − p∗‖2 +
1
μ
‖η‖2

one further obtains

V̇ (x) ≤ −χT

(
H(δ) −

[
0 0 0
0 0 0
0 0 μI

])

︸ ︷︷ ︸
=Ĥ (δ)

χ +
1
μ
‖η‖2 .

Following the reasoning in the proof of Theorem 7, we note that
Ĥ(δ) ≥ Ĥ ′(δ), where

Ĥ ′(δ) :=

⎡

⎣
ε
2 I 0n×n 0n×n

0n×n D − ε(E(δ) + D2) 0n×n

0n×n 0n×n K − εI − μI

⎤

⎦.

It follows that for sufficiently small values of ε and μ, Ĥ(δ) ≥
Ĥ ′(δ) > 0. To continue, let β̂4 := minBTδ∈Θ λmin(Ĥ(δ)). As a

result, we find that for a positive constant α̂ = β3 β̂4
β2

V̇ (x) ≤ −α̂V (x) +
1
μ
‖η‖2 (34)

for all x such that BTδ ∈ Θ.
We now again make sure that no solutions can leave the set

Θ. To make this possible, it is necessary to impose a restriction
on the magnitude of the noise η̄ and the set of possible initial

states, X . In the remainder of the proof, we fix η̄ such that

η̄2 = α̂cμ

with c defined as in (31) in the proof of Theorem 7.
Define the sublevel set Ωc , again as in the proof of Theorem 7.

We now claim that the solutions of the closed-loop system
cannot leave Ωc . In fact, on the boundary ∂Ωc of the sublevel
set Ωc , the right-hand side of (34) equals −α̂c + 1

μ ‖η‖2 , which
is a nonpositive constant by the choice of η̄. Hence, a solution
leaving Ωc would contradict the property that V̇ (x) ≤ 0 for all
x ∈ ∂Ωc . We conclude that all solutions must satisfy (34) for
all t ∈ R≥0 . Hence, we choose X = Ωc .

Having validated (34), we now derive the exponential bound
(33). By the Comparison Lemma, the use of convolution integral
and bounding ‖η(t)‖2 by ‖η(·)‖2

∞, we arrive at

V (x(t)) ≤ e−α̂ tV (x0) +
1

α̂μ
‖η(·)‖2

∞.

We combine this inequality with (28) and (30) to arrive at (33)
with λ = β2/β1 and γ = (α̂β1μ)−1 .

Finally, we address the effects of K and T on α̂ and γ by
introducing the scalar factors κ and τ multiplying K and T .

As κ increases, there is no need to increase ε, while it is
possible to increase μ. Analogously to the reasoning in the
proof of Theorem 7, increasing the value of κ for constant ε and
increasing μ cannot lower the value of β̂4 and α̂, but decreases
the value of γ. If one decreases κ, but multiplies μ by the same
factor so as to keep β̂4 constant, μ will also decrease. This
guarantees α̂ remains constant in this case, preserving its status
as a nondecreasing function of κ. However, a decrease in μ
results in an increase in γ, retaining its status as a decreasing
function of κ. Therefore, α̂ is nondecreasing as a function of κ
and γ is decreasing.

As in Theorem 7, τ affects only β1 and β2 , and the same
result holds true: α̂ is a monotonically nonincreasing function
of τ . Analogously, γ is monotonically nonincreasing in τ . �

Theorem 8 shows that larger gains K (and T ) reduce
(respectively, do not amplify) the effect of the noise η on the
state x. This further emphasizes the tradeoff between frequency
banding and controller performance already touched on in
Section IV-A. We further extend and formalize this tradeoff in
Section V-D by means of an H2 performance analysis.

Remark 2 (Exponential ISS with restrictions): The KL–
function from the ISS inequality (33) is an exponential
function, so the stability property is in fact exponential ISS with
restrictions. The need to include restrictions X on the initial
conditions and η̄ on the noise is due to the requirement of
maintaining the state response within the safety region Θ. �

D. H2 Performance Analysis

All findings thus far show that the closed-loop performance
crucially depends on the choice of Ki and Ti . Small gains Ki

are advantageous for steady-state properties, large gains Ki and
Ti are advantageous for noise rejection, and the nominal perfor-
mance does not deteriorate when increasing Ki/Ti . To further
understand this tradeoff we now study the transient performance
in the presence of stochastic disturbances by means of the H2
norm. The use of the H2 norm for evaluating power network
performance was first introduced in [30]. This versatile frame-
work allows us to characterize various network properties such
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as resistive power losses [30], voltage deviations [31], the role
of inertia [32], and phase coherence [33], in the presence of
stochastic disturbances, and network-wide frequency transients
induced by step changes [34], [35].

Here, in a stochastic setting, we investigate the effect of the
gains K and T on the steady-state frequency variance in the pres-
ence of power disturbances and noisy frequency measurements
modeled as white noise inputs. More precisely, we compute the
H2 norm of the system (15) with output ω(t) and inputs in
(15b) and (15c). With this aim, we first linearize (15) around a
steady state (θ∗, ω∗, p∗).2 Using ∇2U(θ∗) = LB , where LB is
a weighted Laplacian matrix [22], and redefining (θ, ω, p) as a
deviation from steady state, the closed-loop model (15) becomes

θ̇ = ω

Mω̇ = − Dω − LB θ − p

T ṗ = ω − Kp .

We use Sζ ζ to denote the disturbances on the net power
injection and Sηη to model the noise incurred in the frequency
measurement required to implement the controller (13). Then,
by defining the system output as y = ω, we obtain the linear
time-invariant (LTI) system as
⎡

⎣
θ̇
ω̇
ṗ

⎤

⎦ =

⎡

⎣
0 I 0

−M−1LB −M−1D −M−1

0 T−1 −T−1K

⎤

⎦

︸ ︷︷ ︸
=A

[
θ
ω
p

]

+

⎡

⎣
0 0

M−1Sζ 0
0 T−1Sη

⎤

⎦

︸ ︷︷ ︸
=B

[
ζ
η

]
, y = [0 I 0 ]

︸ ︷︷ ︸
=C

[
θ
ω
p

]
.

(35)

The signals ζ ∈ Rn and η ∈ Rn represent white noise with unit
variance, i.e., E[ζ(t)Tζ(τ)] = δ(t − τ)In and E[η(t)Tη(τ)]
= δ(t − τ)In , and Sζ = diag{σζ ,i , i ∈ {1, . . . , n}}, Sη =
diag{ση,i , i ∈ {1, . . . , n}}.

We are interested in understanding the effects of Ki and
Ti on the system performance. To this aim, we will compute
the H2 norm of (35) and compare it with that of the pure
integrator, as well as the open loop system. From (14), we see
that for Ki ↘ 0 (respectively, for Ki ↗ ∞) for i ∈ {1, . . . , n}
we recover the closed-loop system controlled by pure integral
control (7) (respectively, the open-loop system). Thus, in
what follows, we denote the LTI system (35) by Gleaky, for
K = 0n×n by Gintegrator, and for Ki ↗ ∞ by Gopen-loop.

The squared H2 norm of the LTI system (35) is given by

‖G‖2
H2

= lim
t→∞E[yT(t)y(t)]. (36)

Via the observability Gramian X , ‖G‖2
H2

can be computed as

‖G‖2
H2

= tr(BTXB) (37)

where X solves the Lyapunov equation

ATX + XA = −CTC. (38)

2Of course, care must be taken when interpreting the results in this section
since the steady-state itself depends on the controller gain K (see Section IV-A),
but here we are merely interested in the transient performance.

Although a closed-form solution of (37) is generally hard to cal-
culate, it is possible to provide a qualitative analysis by assuming
homogeneous parameters as in the following result.

Theorem 9 (H2 norm of leaky integrator): Consider the LTI
power system model Gleaky in (35). Assume homogeneous pa-
rameters, i.e., Mi = m, Di = d, Ti = τ , Ki = k, σζ ,i = σζ ,
and ση,i = ση , ∀i ∈ {1, . . . , n}. Then, the squared H2 norm of
Gleaky is given by

‖Gleaky‖2
H2

=
nσ2

ζ

2md
+

n∑

i=1

− k
d σ2

ζ + σ2
η

2d
[
mk2 +

(
m
d + dτ

)
k + τ + λiτ 2

] . (39)

In particular, setting k = 0 in (39) gives

‖Gintegrator‖2
H2

=
nσ2

ζ

2md
+

n∑

i=1

σ2
η

2d (τ + λiτ 2)
(40)

where Gintegrator denotes the linearized power system model con-
trolled by the pure integral controller (7).

Proof: Consider the orthonormal change of input, state,
and output variables θ = Uθ′, ω = Uω′, p = Up′, y = Uy′,
ζ = Uζ ′, and η = Uη′, where U is the orthonormal trans-
formation that diagonalizes LB : UT LB U = diag{λ1 , . . . , λn}
with λi being the ith eigenvalue of LB in increasing order
(λ1 = 0 < λ2 ≤ · · · ≤ λn ). The H2 norm is invariant under this
transformation and (35) decouples into n subsystems as

⎡

⎢⎣
θ̇′i
ω̇′

i

ṗ′i

⎤

⎥⎦ =

⎡

⎢⎣
0 1 0

− λi

m − d
m − 1

m

0 1
τ − k

τ

⎤

⎥⎦

︸ ︷︷ ︸
=Ai

⎡

⎣
θ′i
ω′

i

p′i

⎤

⎦+

⎡

⎢⎣
0 0
σζ

m 0
0 ση

τ

⎤

⎥⎦

︸ ︷︷ ︸
=Bi

[
η

′
p,i

ηω ,i
′

]

y′
i = [0 1 0 ]

︸ ︷︷ ︸
=Ci

⎡

⎣
θ′i
ω′

i

p′i

⎤

⎦ . (41)

Then, based on (37) and (38), ‖Gleaky‖2
H2

can be calculated by
computing the norm of the n subsystems (41) (see, e.g., [30],
[32], [36]–[38]). The key step is to solve n Lyapunov equations

AT
i Q + QAi = −CT

i Ci (42)

where Q must be symmetric and can thus be parameterized as

Q =

[
q11 q12 q13
q12 q22 q23
q13 q23 q33

]
. (43)

Whenever λi �= 0 (42) has a unique solution Q. For λ1 = 0, the
system (41) has a zero pole that could render infinite H2 norm
and nonunique solutions to (42). We will later see that this mode
is unobservable and thus the H2 norm is finite.
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We now focus on the case λi �= 0. Direct calculations show
that

q11 =
λi

d

(
−km

τ 2 q33 +
1
2

)
− λi

τ
q33 (44a)

q12 = 0 (44b)

q13 = λiq33 (44c)

q22 =
m

d

(
−km

τ 2 q33 +
1
2

)
(44d)

q23 = −km

τ
q33 (44e)

where all solutions are parameterized in

q33 =
1

2d
[

m
τ 2 k2 +

(
m

dτ 2 + d
τ

)
k + 1

τ + λi

] . (45)

Therefore, we obtain

‖Gleaky,i‖2
H2

= tr(BT
i QBi) =

(σζ

m

)2
q22 +

σ2
η

τ 2 q33 . (46)

By substituting (44d) and (45) into (46), we arrive at

‖Gleaky,i‖2
H2

=

k
τ 2

(
− σ 2

ζ

d + σ 2
η

k

)

2d
[

m
τ 2 k2 +

(
m

dτ 2 + d
τ

)
k + 1

τ + λi

] +
σ2

ζ

2md
. (47)

We now consider the case λi = 0, i.e., i = 1. Since λ1 = 0,
neither ω̇′

1 , nor ṗ′1 , nor y′
1 depends on θ′1 in (41). Thus, θ′i is not

observable, and we can simplify the system (41) to
[

ω̇′
i

ṗ′i

]
=

[
− d

m − 1
m

1
τ − k

τ

]

︸ ︷︷ ︸
=Ai

[
ω′

i

p′i

]
+
[ σζ

m 0
0 ση

τ

]

︸ ︷︷ ︸
=Bi

[
η

′
p,i

ηω ,i
′

]

y′
i = [1 0 ]

︸ ︷︷ ︸
Ci

[
ω′

i

p′i

]
.

Again, we solve the Lyapunov equation (42), but here Q =
QT is a 2-by-2 matrix. A similar calculation as before yields
that ‖Gleaky,1‖2

H2
is also given by (47) with λ1 = 0. Therefore,

‖Gleaky‖2
H2

=
∑n

i=1 ‖Gleaky,i‖2
H2

, which is equal to (39).
Finally, note from (7) and (13) that the leaky integra-

tor reduces to an integrator when K = 0n×n . It follows that
‖Gintegrator‖2

H2
can be obtained by setting k = 0 in (39). �

Theorem 9 provides an explicit expression for the closed-
loop H2 performance under leaky integral control (13) as well
as under pure integral control (7). Observe from (37), (39), and
(40) that power disturbances and measurement noise have an
independent additive effect on the H2 norm. Thus, either of the
two effects can be obtained by setting ση = 0 or σζ = 0.

The following corollary, whose proof is in Appendix B1,
shows the supremacy of leaky integral control over pure integral
control for any positive gain k. Furthermore, in the presence of
only measurement noise, increasing k or τ always improves
‖Gleaky‖2

H2
which is consistent with the ISS insights obtained

from Theorem 8.
Corollary 10 (Monotonicity of the H2 norm): Under the as-

sumptions of Theorem 9, for any k > 0 the closed-loopH2 norm

under leaky integral control is strictly smaller than that under
pure integral control: ‖Gleaky‖2

H2
< ‖Gintegrator‖2

H2
. Moreover,

in the absence of power disturbances, σζ = 0, ‖Gleaky‖2
H2

is a
strictly decreasing function of k ≥ 0 and τ ≥ 0.

Remark 3 (Optimal H2 performance at open loop): Observe
from (39) that in the absence of power disturbances (σζ = 0)
and in the presence of measurement noise (ση �= 0), the opti-
mal gains are k ↗ ∞ or τ ↗ ∞, which from (14) reduces to
the open-loop case. This insight is consistent with the noise
rejection bounds (33) in Theorem 8. Of course, the steady-
state characteristics in Section IV-A all demand a sufficiently
small value of k, and power disturbances will typically be
present as well. Nevertheless, these considerations pose the
question of whether leaky integral control can ever improve
the open-loop performance ‖Gopen-loop‖2

H2
:= nσ2

ζ /(2md) ob-
tained for k, τ ↗ ∞. We explicitly address this question
below. �

The next corollary (for proof, see Appendix B2) will use
the characterization of the effect of τ on the performance as a
mechanism to derive an optimal choice for both k and τ that
can ensure the improvement of the leaky integrator performance
‖Gleaky‖H2 not only with respect to the pure integrator perfor-
mance ‖Gintegrator‖H2 but also with respect to the open-loop
performance ‖Gopen-loop‖H2 .

Corollary 11 (H2 optimal tuning): Under the assumption of
Theorem 9 and for any τ > 0, and k such that

k

d
>

(
ση

σζ

)2

(48)

the closed-loop performance under the leaky integral control
outperforms the open-loop system performance, i.e.,

‖Gleaky‖2
H2

< ‖Gopen-loop‖2
H2

.

Moreover, the global minimum of the H2 norm under leaky
integral control is obtained by setting τ → τ ∗ = 0 and k to

k∗ = d

(
ση

σζ

)2
(

1 +

√
1 +

(σζ

d

)2
)

. (49)

Remark 4 (Necessity of condition (48)): We highlight that
condition (48) is, in fact, necessary for improving performance
beyond ‖Gopen-loop‖H2 . When (48) is violated, ∂

∂τ ‖Gleaky‖2
H2

<
0; see Appendix B2. In this case, if (48) does not hold, it is easy
to see from (39) that ‖Gleaky‖H2 ↘ ‖Gopen-loop‖H2 as τ ↗ ∞,
which implies ‖Gleaky‖H2 > ‖Gopen-loop‖H2 . �

Corollary 11 suggests that the optimal controller tuning re-
quires τ ∗ = 0, which reduces the leaky integrator to a propor-
tional droop controller with gain 1/k∗. However, setting τ to
small values reduces the response time Ti/Ki = τ/k of the
leaky integrator, which in an actual implementation will be lim-
ited by the actuator’s response time (not modeled here). We
point out, however, that Corollary 11 also shows that the leaky
integrator provides performance improvements for any τ > 0,
and thus this limitation will only affect the extent to which the
H2 performance is improved.

The optimal value k∗ in (49) also unveils interesting trade-
offs between performance and robustness. More precisely, on
the one hand, in the high-power disturbance regime σζ ↗ ∞,
the optimal gain is k∗ ↘ 0. The latter choice of course weakens
the robustness properties described in Section IV-B. On the other
hand, in the presence of large measurement errors ση ↗ ∞, one
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Fig. 1. 39-bus New England system used in simulations.

loses the ability to properly regulate the frequency as k∗ ↗ ∞,
i.e., the open-loop case.

Remark 5 (Joint banded frequency restoration and optimal
H2 performance): This last discussion also unveils a critical
tradeoff of leaky integral control: It may be infeasible to jointly
satisfy (20) and (48) when the measurement noise ση is large.
For a specified level ε of frequency restoration, the parameter k
that satisfies (20), or equivalently

k ≤
( |∑i P ∗

i |
nε

− d

)−1

may not satisfy (48) and thus leads to worse performance than
that of open loop. Of course, one can still take large values of
τ to mitigate this degradation, as in Remark 3. However, this
comes at the cost of lower convergence rate: Large τ leads to
slow feedback. We refer to Section VI for further discussion of
these tradeoffs. �

V. CASE STUDY: IEEE 39 NEW ENGLAND SYSTEM

In this section, we perform a case study with the 39-bus New
England system (see Fig. 1), which is modeled as in (1)–(2)
with parameters Mi (for the 10 generator buses), Vi , and Bij

taken from [39]. The inertia coefficients Mi are set to zero for
the 29 (load) buses without generators. Note that Mi’s in our
simulations are heterogeneous, which relaxes our simplifying
assumption in Section IV-D that Mi’s are homogeneous and
allows for testing the proposed scheme under a more realistic
setting. For every generator bus i, the damping coefficient Di

is chosen as 20 per unit (p.u.) so that a 0.05 p.u. (3 Hz) change
in frequency will cause a 1 p.u. (1000 MW) change in the
generator output power. For every load bus i, Di is chosen as
1/200 of that of a generator. Note that the generator turbine-
governor dynamics are ignored in the model (1)–(2) leading to
a simulated frequency response that is faster than in practice,
but the fundamental dynamics of the system are retained for
a proof-of-concept illustration of the proposed controller. For

all simulations below, a 300-MW step increase in active-power
load occurs at each of buses 15, 23, and 39 at time t = 5 s.

A. Comparison Between Controllers Without Noise

We implement each of the following controllers across the 10
generators to stabilize the system after the increase in load.

1) Distributed-averaging based integral control (DAI):

u = − p (50a)

T ṗ = A−1ω − LAp . (50b)

Here, L = LT is the Laplacian matrix of a communication
graph among the controllers, which we choose as a ring
graph with uniform weights 0.1. The matrix A is diagonal
with entries Aii = ai being the cost coefficients in (4a)
chosen as 1.0 for generators G3, G5, G6, G9, and G10,
and 2.0 for the rest. We choose the time constant Ti =
0.05 s for every generator i. The DAI control (50) is
known to achieve stable and optimal frequency regulation
as in Problem 2; see [7]–[12]. Even though DAI control is
based on a reliable and fast communication environment,
we include it here as a baseline for comparison purposes.

2) Decentralized pure integral control (7) with time constant
Ti = 0.05 s for every generator i.

3) Decentralized leaky integral control (13) with time con-
stant Ti = 0.05 s for every generator i. The gain Ki equals
0.005 for generators G3, G5, G6, G9, and G10, and 0.01
for the rest. The values of Ki are proportional to the val-
ues of ai in DAI (50) so that the dispatch objectives (4a)
and (22a) are identical.

Fig. 2 (dashed plots) shows the frequency at G1 (all other
generators display similar frequency trends), and Fig. 3 shows
the active-power outputs of all generators, under the different
controllers above and without noisy measurements. First, note
that all closed-loop systems reach stable steady-states; see Theo-
rems 2 and 8. Second, observe from Fig. 2 that both pure integral
and DAI control can perfectly restore the frequencies to the nom-
inal value, whereas leaky integral control leads to a steady-state
frequency error as predicted in Lemma 3. Third, as observed
from Fig. 3, both DAI and leaky integral control achieve the
desired asymptotic power sharing (2:1 ratio between G3, G5,
G6, G9, G10 and other generators) as predicted in Corollary 5.
However, leaky integral control solves the dispatch problem (22)
thereby underestimating the net load compared to DAI, which
solves (4); see Corollary 6. We conclude that fully decentralized
leaky integral controller can achieve a performance similar to
the communication-based DAI controller—though at the cost of
steady-state offsets in both frequency and power adjustment.

B. Comparison Between Controllers With Noise

Next, a noise term ηi(t) is added to the frequency measure-
ments ω in (50b), (7b), and (13b) for DAI, pure integral, and
leaky integral control, respectively. The noise ηi(t) is sampled
from a uniform distribution on [0, ηi ], with ηi selected such
that the ratios of ηi between generators are 1 : 2 : 3 : · · · : 10
and ‖[η1 , η2 , . . . ]‖ = η = 0.01Hz. The meaning of η here is
consistent with that in Definition 1 and Theorem 8. At each
generator i, the noise has nonzero mean ηi/2 (inducing a con-
stant measurement bias) and variance σ2

η ,i = η2
i /12.
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Fig. 2. Frequency at generator G1 under different control methods. (a) DAI control. (b) Decentralized pure integral control. (c) Leaky integral
control.

Fig. 3. Changes in active-power outputs of all the generators without noise. (a) DAI control. (b) Decentralized pure integral control. (c) Leaky
integral control.

Fig. 4. Changes in active-power outputs of all the generators, under a frequency measurement noise bounded by η = 0.01 Hz. (a) DAI control.
(b) Decentralized pure integral control. (c) Leaky integral control.

Fig. 2 (solid plots) shows the frequency at generator G1,
and Fig. 4 shows the changes in active-power outputs of all
the generators under such a measurement noise. Observe from
Fig. 2(b)–(c) and Fig. 4(b)–(c) that leaky integral control is
more robust to measurement noise than pure integral control.
Fig. 4(a) and (c) show that DAI control is even more robust than
the leaky integral control in terms of generator power outputs,
which is not surprising since the averaging process between
neighboring DAI controllers can effectively mitigate the effect
of noise—thanks to communication.

C. Impacts of Leaky Integral Control Parameters

Next, we investigate the impacts of inverse dc gains Ki and
time constants Ti on the performance of leaky integral control.

First, we set the integral time constant Ti = τ = 0.05 s for
every generator i, and tune the gains Ki = k for generators G3,
G5, G6, G9, and G10; Ki = 2k for other generators to ensure the
same asymptotic power sharing as above. The following metrics

of controller performance are calculated for the frequency at
generator G1:

1) the steady-state frequency error without noise;
2) the convergence time without noise, which is defined as the

time when frequency error enters and stays within [0.95, 1.05]
times its steady-state;

3) the frequency root-mean-square-error (RMSE) from its
nominal steady-state, calculated over 60–80 s (the average
RMSE over 100 random realizations is taken).

The RMSE results from measurement noise ηi(t) generated
every second at every generator i from a uniform distribution
on [−ηi, ηi ], where the meaning of ηi is the same as that in
Section V-B; ηi(t) has zero mean so that the performance in
mitigating steady-state bias and noise-induced variance can be
observed separately. Fig. 5 shows these metrics as functions of
k. It can be observed that the steady-state error increases with k,
as predicted by Lemma 3; convergence is faster as k increases,
in agreement with Theorem 7; and robustness to measurement
noise is improved as k increases, as predicted by Theorem 8 and
Corollary 10.
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Fig. 5. Steady-state error (upper), convergence time (middle), and
RMSE (lower) of frequency at generator G1, as functions of the gain
k for leaky integral control. The time constants are Ti = τ = 0.05 s for all
generators.

Fig. 6. Convergence time (upper) and RMSE (lower) of frequency at
generator G1, as functions of the time constant Ti = τ for leaky integral
control. The gains Ki are 0.005 for G3, G5, G6, G9, G10 and 0.01 for
other generators.

Next, we tune the integral time constants Ti = τ for all gen-
erators and fix k = 0.005, i.e., Ki = 0.005 for G3, G5, G6, G9,
G10 and Ki = 0.01 for other generators, for a balance between
steady-state and transient performance. Since the steady-state
is independent of τ , only the convergence time (measured
for the case without noise) and RMSE (taken as the average
of 100 runs with different realizations of noise) of frequency
at generator G1 are shown in Fig. 6. It can be observed that
convergence is faster as τ decreases, which is in line with
Theorem 7. Robustness to measurement noise is improved as

τ increases, which is in line with Theorem 8 and predicted by
Corollary 10.

Finally, we discuss performance degradation if the response
time of leaky integral controller is smaller than the actuation
response time. The generator turbine-governor dynamics can
be modeled as first- or second-order transfer functions, with
dominant time constants in the range of [0.25 s, 2.5 s] for hy-
draulic turbines and [4 s, 7 s] for steam turbines [40, Ch. 9]. The
analogous time constant for our controller corresponds to the
parameter ratio Ti/Ki . For the simulations in Figs. 2–4, this
ratio was chosen as 10 s for generators G3, G5, G6, G9, G10
and of 5 s for others. Thus, they are compatible with actuation
through steam and hydraulic turbines. If this was not the case,
the controllers have to be slowed down and their performance
can be inferred using Figs. 5 and 6. Finally, we stress that the
proven robustness guarantees, i.e., input-to-state-stability of the
nonlinear model, will not be at stake, provided that the initial
conditions and the maximum noise magnitude are those charac-
terized in the proof of Theorem 8.

D. Tuning Recommendations

Our results quantifying the effects of the gains K and T on
the system behavior lead to a number of insights about tuning
the gains in a practical setting. Specifically, a possible approach
is as follows. First, the ratios between the values K−1

i can be
determined using Corollary 5 and knowledge about the genera-
tor operation cost. Second, a lower bound on the sum of these
values

∑n
i=1 K−1

i can be obtained from Corollary 4 according
to the required steady-state performance. Since by Theorem 7
larger gains Ki are beneficial to faster convergence, it is prefer-
able to set the values of K−1

i equal to the lower bound from
Corollary 4. Note that in Corollary 4, the value of ε is normally
specified in the grid code and is thus assumed to be known. The
grid code also specifies a worst-case power imbalance

∑n
i=1Pi

∗
that frequency controllers have to counteract before the system
is redispatched. Specifically, in our simulations, we assumed
an admissible frequency deviation ε = 0.3 Hz = 0.005 p.u., a
worst-case power imbalance

∑n
i=1 Pi

∗ = 1800 MW = 18 p.u.
(approximately the simultaneous loss of the two largest gener-
ators), and

∑n
i=1Di = 2100 p.u. based on practical generator

droop settings and load damping values. As a result of Corol-
lary 4, we obtained

∑n
i=1 K−1

i = 1500 p.u., which together with
Corollary 5 leads to our choice of Ki = 0.005 for generators
G3, G5, G6, G9, G10 and 0.01 for the others. Third, with the in-
verse gains K−1

i fixed, the time constants Ti can be determined
to strike a desired tradeoff between frequency convergence rate
and noise rejection. We outline two possible approaches in the
following based on Theorem 8 or simulation data.

A possible approach to determine Ti is foreshadowed by the
proof of Theorem 8. The maximum noise magnitude η̄ (for
which input-to-state stability can be established in Theorem 8)
is linear in β1/β2 , which are both defined as functions of T in
the proof of Lemma 14. From their definitions, one learns that
η̄ is a convex function of each of the values of T . By requiring
that the value of η̄ exceeds the sensor noise estimate, one can
then find bounds on the values of Ti . Within these bounds one
should select the lowest values of Ti , as this is both beneficial
for a faster convergence rate α̂ and a smaller deviation due to
the disturbance γη̄2 , as seen in the proof of Theorem 8.

If the system under investigation makes the above consid-
erations for T infeasible, an alternative tuning approach for T
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relies on simulation data. For example, consider the simplified
case presented in Fig. 6, where there is a single time constant
τ = Ti for all the generators i to be tuned. By means of regres-
sion methods, one can approximate the relationships between
the frequency convergence time Tconv , the frequency RMSE
fRMSE , and the gain τ via the functions

Tconv(τ) = aτ + b

fRMSE(τ) = ce−ατ + d

where a > 0, b ∈ R, c > 0, d ∈ R, α > 0 are constants. The
time constant τ can then be chosen according to the criterion

min
τ≥0

γ Tconv(τ) + fRMSE(τ)

where γ > 0 is a tradeoff parameter selected according to the
relative importance of convergence time and noise robustness.
The unique optimal solution to this tradeoff criterion is

τ ∗ = max
{

1
α

log
(

αc

γa

)
, 0
}

.

VI. SUMMARY AND DISCUSSION

In the following, we summarize our findings and the various
tradeoffs that need to be taken into account for the tuning of the
proposed leaky integral controller (13).

From the discussion following the Laplace-domain represen-
tation (14), the gains Ki and Ti of the leaky integral controller
(13) can be understood as interpolation parameters for which the
leaky integral controller reduces to a pure integrator (Ki ↘ 0)
with gain Ti , a proportional (droop) controller (Ti ↘ 0) with
gain K−1

i , or no control action (Ki, Ti ↗ ∞). Within these ex-
treme parameterizations, we found the following tradeoffs: The
steady-state analysis in Section IV-A showed that proportional
power sharing and banded frequency regulation is achieved for
any choice of gains Ki > 0: Their sum gives a desired steady-
state frequency performance (see Corollary 4), and their ratios
give rise to the desired proportional power sharing [see Corol-
lary (5)]. However, a vanishingly small gain Ki is required for
asymptotically exact frequency regulation (see Corollary 6), i.e.,
the case of integral control. Otherwise, the net load is always un-
derestimated. On the one hand, in regard to stability, we inferred
global stability for vanishing Ki ↘ 0 (see Theorem 2) but also
an absence of robustness to measurement errors as in (12). On
the other hand, for positive gains Ki > 0 we obtained nominal
local exponential stability (see Theorem 7) with exponential rate
as a function of Ki/Ti and robustness (in the form of exponen-
tial ISS with restrictions) to bounded measurement errors (see
Theorem 8) with increasing (respectively, nondecreasing) ro-
bustness margins to measurement noise as Ki (or Ti) becomes
larger. From a H2-performance perspective, we could quali-
tatively (under homogeneous parameter assumptions) confirm
these results for the linearized system. In particular, we showed
that measurement disturbances are increasingly suppressed for
larger gains Ki and Ti (see Corollary 10), but for sufficiently
large power disturbances a particular choice of gains Ki to-
gether with sufficiently small time constants Ti optimizes the
transient performance (see Corollary 11), i.e., the case of droop
control.

Our findings, especially the last one, pose the question
whether the leaky integral controller (13) actually improves
upon proportional (droop) control (the case Ti = 0) with

sufficiently large droop gain K−1
i . The answers to this question

can be found in practical advantages: 1) leaky integral control
obviously low-pass filters measurement noise; 2) has a finite
bandwidth thus resulting in a less aggressive control action
more suitable for slowly ramping generators; and 3) is not
susceptible to windup (indeed, a PI control action with anti-
windup reduces to a lag element [19]). 4) Other benefits that we
did not touch upon in our analysis are related to classical loop
shaping, e.g., the frequency for the phase shift can be specified
for leaky integral control (13) to give a desired phase margin
(and thus also practically relevant delay margin) where needed
for robustness or overshoot.

In summary, our lag-element-inspired leaky integral control
is fully decentralized, stabilizing, and can be tuned to achieve
robust noise rejection, satisfactory steady-state regulation, and a
desirable transient performance with exponential convergence.
We showed that these objectives are not always aligned, and
tradeoffs have to be found. Our tuning recommendations are
summarized in Section V-D. From a practical perspective, we
recommend to tune the leaky integral controller toward robust
steady-state regulation and to address transient performance
with related lead-element-inspired controllers [38].

We believe that the aforementioned extension of the leaky
integrator with lead compensators is a fruitful direction for fu-
ture research. Another relevant direction is a rigorous analysis
of decentralized integrators with dead-zones that are often used
by practitioners (in power systems and beyond) as alternatives
to finite-dc-gain implementations, such as the leaky integrator.
Finally, all the presented results can and should be extended to
more detailed higher-order power system models.

APPENDIX

A. Technical Lemmas

We recall several technical lemmas used in the main text.
Lemma 12 (Matrix cross terms): [12, Lemma 15] Given any

four matrices A, B, C, and D of appropriate dimensions, we
have

M :=
[

A BTC
CTB D

]
≥
[

A − BTB 0
0 D − CTC

]
=: M ′.

Lemma 13 (Bounding the potential function): [12, Lemma
5] Consider the Bregman distance Vδ := U(δ) − U(δ̄) −∇U
(δ̄)T(δ − δ∗). The following properties hold for all δ, δ̄ that sat-
isfy BTδ,BTδ̄ ∈ Θ.

1) There exist positive scalars α1 and α2 such that

α1‖δ − δ∗‖ ≤ ‖∇U(δ) −∇U(δ∗)‖ ≤ α2‖δ − δ∗‖.
2) There exist positive scalars α3 and α4 such that

α3‖δ − δ∗‖2 ≤ Vδ ≤ α4‖δ − δ∗‖2 .

Lemma 14 (Positivity of V ): Suppose that Assumption 2
holds true and BTδ ∈ Θ. The Lyapunov function V in (27)
satisfies

β1‖x‖2 ≤ V (x) ≤ β2‖x‖2

for some positive constants β1 and β2 , with x given in (25),
provided that ε is sufficiently small.
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Proof: This proof follows the same line of arguments as the
proof of [12, Lemma 8], but accounts for our slightly different
Lyapunov function. We will bound V (x) in (27) term-by-term.
The quadratic terms in ω − ω∗ and p − p∗ are easily bounded
in terms of the eigenvalues of matrices M and T , respectively.
The terms in δ and δ∗ is addressed in the second statement of
Lemma 13. These three terms lead to the early bound

min(λmin(M), λmin(T ), α3)‖x‖2 ≤ V (x)|ε=0

≤ max(λmax(M), λmax(T ), α4)‖x‖2 .

The cross term ε(∇U(δ) −∇U(δ∗))TMω can be written as
(∇U(δ) −∇U(δ∗)

ω

)T[
0 ε

2 M
ε
2 M 0

](∇U(δ) −∇U(δ∗)
ω

)
.

This allows us to apply Lemma 12, which yields the

−‖∇U(δ) −∇U(δ∗)‖2 − λmax(M)2‖ω‖2

≤ (∇U(δ) −∇U(δ∗))TMω

≤ ‖∇U(δ) −∇U(δ∗)‖2 + λmax(M)2‖ω‖2 .

By applying the first statement of Lemma 13, we can bound the
entire Lyapunov function using

β1 = min(λmin(M) − ελmax(M)2 , λmin(T ), α3 − εα2
2)

β2 = max(λmax(M) + ελmax(M)2 , λmax(T ), α4 + εα2
2).

Finally, we select ε sufficiently small so that β1 > 0. �

B. Proof of Corollaries

We provide here the proof of Corollaries 10 and 11.
1) Proof of Corollary 10:
Proof: For a given value of τ , consider the function

f(k) = nα6 +
n∑

i=1

−α1k + α2

α3k2 + α4k + α5(λi)
(51)

where α1 = σ2
ζ /d, α2 = σ2

η , α3 = 2dm, α4 = 2d (m/d + dτ),
α5(λi) = 2d(τ + λiτ

2), and α6 = σ2
ζ /2md are all positive pa-

rameters. The function f(k) interpolates between ‖Gleaky‖2
H2

=
f(k) and ‖Gintegrator‖2

H2
= f(0).

We prove that if either power disturbances σζ or measurement
noise ση equals zero, then ‖Gleaky‖2

H2
< ‖Gintegrator‖2

H2
holds

true for all k > 0. In presence of only measurement noise, i.e.,
when σζ = 0 the function f(k) reduces to

fη (k) =
n∑

i=1

α2

α3k2 + α4k + α5(λi)
(52)

whose derivative with respect to k is

f ′
η (k) = −

n∑

i=1

α2(2α3k + α4)
(α3k2 + α4k + α5(λi))2 . (53)

Clearly, for all k > 0, f ′
η (k) < 0. An analogous reasoning holds

true when analyzing ‖Gleaky‖2
H2

as a function of τ , which shows
the second claimed statement. Furthermore, f ′

η (k) < 0 also im-
plies that ‖Gleaky‖2

H2
= fη (k) < fη (0) = ‖Gintegrator‖2

H2

If only power disturbances are applied, i.e., when ση = 0 in
(39) and (40), then f(k) reduces to

fζ (k) = nα6 −
n∑

i=1

α1k

α3k2 + α4k + α5(λi)
. (54)

Clearly, for all k > 0, ‖Gleaky‖2
H2

= fζ (k) < fζ (0) =
‖Gintegrator‖2

H2
. Therefore, since ‖Gleaky‖2

H2
= f(k) = fζ (k) +

fη (k), it follows for all k > 0 that ‖Gleaky‖2
H2

= fη (k) + fζ

(k) < fη (0) + fζ (0) = ‖Gintegrator‖2
H2

. �
2) Proof of Corollary 11:
Proof: First notice that for σ2

η − σ2
ζ k/d > 0, the first term

of (39) is always positive and thus ‖Gleaky‖H2 > ‖Gopen loop‖H2

for all τ . As a result, one can only improve the performance
beyond open loop when σ2

η − σ2
ζ k/d < 0, which is equivalent

to (48). The derivative of (39) with respect to τ equals

∂

∂τ
‖Gleaky‖2

H2
=

n∑

i=1

−(σ2
η − k

d σ2
ζ )2d(2τλi + 1)

(2d[mk2 + (m
d + dτ)k + τ + λiτ 2 ])2 .

Therefore, ∂
∂τ ‖Gleaky‖2

H2
> 0 whenever (48) holds true. It fol-

lows that the minimal norm is the limit when τ = 0.
We now compute the derivative of fζ (k) as

f ′
ζ (k) =

n∑

i=1

α1(α3k
2 − α5(λi))

(α3k2 + α4k + α5(λi))2 . (55)

Notice that τ = 0 implies α5(λi) = τ(1 + λiτ) = 0 so that

f ′
ζ (k)

∣∣
τ =0 =

n∑

i=1

α1(α3k
2)

(α3k2 + α4k)2 .

Thus, when considering fη and fζ for τ = 0, we get

f ′(k)
∣∣
τ =0 = f ′

η (k)
∣∣
τ =0 + f ′

ζ (k)
∣∣
τ =0

= n
α1α3k

2 − 2α2α3k − α2α4

(α3k2 + α4k)2 .

By setting f ′(k)
∣∣
τ =0 = 0, the optimal value of k is obtained as

the unique positive root of the second-order polynomial

p(k) = α1α3k
2 − 2α2α3k − α2α4

= 2m
(
σ2

ζ k2 − 2dσ2
η k − σ2

η

)

which is explicitly given by (49). �

ACKNOWLEDGMENT

The authors would like to thank D. Groß for various helpful
discussions that improved the presentation of this paper.

REFERENCES

[1] J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics.
2nd ed., Hoboken, NJ, USA: Wiley, 2008.

[2] H. Bevrani, Robust Power System Frequency Control, vol. 85. New York,
NY, USA: Springer-Verlag, 2009.

[3] D. K. Molzahn et al., “A survey of distributed optimization and control
algorithms for electric power systems,” IEEE Trans. Smart Grid, vol. 8,
no. 6, pp. 2941–2962, Nov. 2017.

[4] F. Dörfler and S. Grammatico, “Gather-and-broadcast frequency control
in power systems,” Automatica, vol. 79, pp. 296–305, 2017.



WEITENBERG et al.: ROBUST DECENTRALIZED SECONDARY FREQUENCY CONTROL IN POWER SYSTEMS: MERITS AND TRADEOFFS 3981

[5] M. Andreasson, D. V. Dimarogonas, H. Sandberg, and K. H. Johansson,
“Distributed control of networked dynamical systems: Static feedback,
integral action and consensus,” IEEE Trans. Autom. Control, vol. 59,
no. 7, pp. 1750–1764, Jul. 2014.

[6] Q. Shafiee, J. M. Guerrero, and J. Vasquez, “Distributed Secondary Con-
trol for Islanded MicroGrids – A Novel Approach,” IEEE Trans. Power
Electron., vol. 29, no. 2, pp. 1018–1031, 2014.

[7] C. Zhao, E. Mallada, and F. Dörfler, “Distributed frequency control for sta-
bility and economic dispatch in power networks,” in Proc. Amer. Control
Conf., Chicago, IL, USA, Jul. 2015, pp. 2359–2364.

[8] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy:
Distributed control & economic optimality in microgrids,” IEEE Trans.
Control Netw. Syst., vol. 3, no. 3, pp. 241–253, Sep. 2016.

[9] C. De Persis, N. Monshizadeh, J. Schiffer, and F. Dörfler, “A Lyapunov
approach to control of microgrids with a network-preserved differential-
algebraic model,” in Proc. IEEE Conf. Decis. Control, Las Vegas, NV,
USA, Dec. 2016, pp. 2595–2600.

[10] S. Trip, M. Bürger, and C. De Persis, “An internal model approach to
(optimal) frequency regulation in power grids with time-varying voltages,”
Automatica, vol. 64, pp. 240–253, 2016.

[11] M. Andreasson, D. V. Dimarogonas, H. Sandberg, and K. H. Johansson,
“Distributed PI-control with applications to power systems frequency
control,” in Proc. Amer. Control Conf., Portland, OR, USA, Jun. 2014,
pp. 3183–3188.

[12] E. Weitenberg, C. De Persis, and N. Monshizadeh, “Exponential conver-
gence under distributed averaging integral frequency control,” Automatica,
vol. 98, pp. 103–113, 2018.

[13] N. Li, C. Zhao, and L. Chen, “Connecting automatic generation control
and economic dispatch from an optimization view,” IEEE Trans. Control
Netw. Syst., vol. 3, no. 3, pp. 254–264, Sep. 2016.

[14] X. Zhang and A. Papachristodoulou, “A real-time control framework for
smart power networks: Design methodology and stability,” Automatica,
vol. 58, pp. 43–50, 2015.

[15] C. Zhao, E. Mallada, S. H. Low, and J. W. Bialek, “A unified framework
for frequency control and congestion management,” in Proc. Power Syst.
Comput. Conf., 2016, pp. 1–7.

[16] E. Mallada, C. Zhao, and S. Low, “Optimal load-side control for frequency
regulation in smart grids,” IEEE Trans. Autom. Control, vol. 62, no. 12,
pp. 6294–6309, Dec. 2017.

[17] N. Ainsworth and S. Grijalva, “Design and quasi-equilibrium analysis
of a distributed frequency-restoration controller for inverter-based micro-
grids,” in Proc. North Amer. Power Symp., Manhattan, KS, USA, Sep.
2013, pp. 1–6.

[18] J. Schiffer, R. Ortega, C. A. Hans, and J. Raisch, “Droop-controlled
inverter-based microgrids are robust to clock drifts,” in Proc. Amer. Con-
trol Conf., Chicago, IL, USA, Jul. 2015, pp. 2341–2346.

[19] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of
Dynamic Systems, vol. 2. Reading, MA, USA: Addison-Wesley, 1994.

[20] R. Heidari, M. M. Seron, and J. H. Braslavsky, “Ultimate boundedness
and regions of attraction of frequency droop controlled microgrids with
secondary control loops,” Automatica, vol. 81, pp. 416–428, 2017.

[21] Y. Han et al., “Analysis of washout filter-based power sharing strategy–
An equivalent secondary controller for islanded microgrid without LBC
lines,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4061–4076. 2018.

[22] F. Bullo, Lectures on Network Systems, 1 Ed., with contributions
by J. Cortes, F. Dörfler, and S. Martinez, 2018. [Online]. Available:
http://motion.me.ucsb.edu/book-lns

[23] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla,
“Hierarchical control of droop-controlled AC and DC microgrids–A gen-
eral approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58,
no. 1, pp. 158–172, Jan. 2011.

[24] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control, 2nd ed. Hoboken, NJ, USA: Wiley, 1996.

[25] H. K. Khalil, Nonlinear Control. M. J. Horton, Ed. London, U.K.: Pearson,
2014.

[26] P. J. Campo and M. Morari, “Achievable closed-loop properties of systems
under decentralized control: Conditions involving the steady-state gain,”
IEEE Trans. Autom. Control, vol. 39, no. 5, pp. 932–943, May 1994.

[27] K. J. Åström and T. Hägglund, Advanced PID Control. Pittsburgh, PA,
USA: ISA-The Instrumentation, Systems and Automation Society, 2006.

[28] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability.
Hoboken, NJ, USA: Wiley, 1998.

[29] A. R. Teel, “A nonlinear small gain theorem for the analysis of control
systems with saturation,” IEEE Trans. Autom. Control, vol. 41, no. 9,
pp. 1256–1270, Sep. 1996.

[30] E. Tegling, B. Bamieh, and D. Gayme, “The price of synchrony: Evaluating
the resistive losses in synchronizing power networks,” IEEE Trans. Control
Netw. Syst., vol. 2, no. 3, pp. 254–266, Sep. 2015.

[31] M. Andreasson, E. Tegling, H. Sandberg, and K. H. Johansson, “Per-
formance and scalability of voltage controllers in multi-terminal HVdc
networks,” in Proc. Amer. Control Conf., May 2017, pp. 3029–3034.

[32] B. K. Poolla, S. Bolognani, and F. Dorfler, “Optimal placement of virtual
inertia in power grids,” IEEE Trans. Autom. Control, vol. 62, no. 12,
pp. 6209–6220, Dec. 2017.

[33] E. Tegling, M. Andreasson, J. W. Simpson-Porco, and H. Sandberg, “Im-
proving performance of droop-controlled microgrids through distributed
pi-control,” in Proc. Amer. Control Conf., Jul. 2016, pp. 2321–2327.

[34] M. Andreasson, E. Tegling, H. Sandberg, and K. H. Johansson, “Coherence
in synchronizing power networks with distributed integral control,” in
Proc. IEEE 56th Annu. Conf. Decis. Control, Dec. 2017, pp. 6327–6333.

[35] F. Paganini and E. Mallada, “Global performance metrics for synchroniza-
tion of heterogeneously rated power systems: The role of machine models
and inertia,” in Proc. 55th Annu. Allerton Conf. Commun., Control, Com-
put., Oct. 2017, pp. 324–331.
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