943 research outputs found

    Multi-view image coding with wavelet lifting and in-band disparity compensation

    Get PDF

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Transforms for intra prediction residuals based on prediction inaccuracy modeling

    Get PDF
    In intra video coding and image coding, the directional intra prediction is used to reduce spatial redundancy. Intra prediction residuals are encoded with transforms. In this paper, we develop transforms for directional intra prediction residuals. Specifically, we observe that the directional intra prediction is most effective in smooth regions and edges with a particular direction. In the ideal case, edges can be predicted fairly accurately with an accurate prediction direction. In practice, an accurate prediction direction is hard to obtain. Based on the inaccuracy of prediction direction that arises in the design of many practical video coding systems, we can estimate the residual variance and propose a class of transforms based on the estimated variance function. The proposed method is evaluated by the energy compaction property. Experimental results show that with the proposed method, the same amount of energy in directional intra prediction residuals can be preserved with a significantly smaller number of transform coefficients

    Transformées basées graphes pour la compression de nouvelles modalités d’image

    Get PDF
    Due to the large availability of new camera types capturing extra geometrical information, as well as the emergence of new image modalities such as light fields and omni-directional images, a huge amount of high dimensional data has to be stored and delivered. The ever growing streaming and storage requirements of these new image modalities require novel image coding tools that exploit the complex structure of those data. This thesis aims at exploring novel graph based approaches for adapting traditional image transform coding techniques to the emerging data types where the sampled information are lying on irregular structures. In a first contribution, novel local graph based transforms are designed for light field compact representations. By leveraging a careful design of local transform supports and a local basis functions optimization procedure, significant improvements in terms of energy compaction can be obtained. Nevertheless, the locality of the supports did not permit to exploit long term dependencies of the signal. This led to a second contribution where different sampling strategies are investigated. Coupled with novel prediction methods, they led to very prominent results for quasi-lossless compression of light fields. The third part of the thesis focuses on the definition of rate-distortion optimized sub-graphs for the coding of omni-directional content. If we move further and give more degree of freedom to the graphs we wish to use, we can learn or define a model (set of weights on the edges) that might not be entirely reliable for transform design. The last part of the thesis is dedicated to theoretically analyze the effect of the uncertainty on the efficiency of the graph transforms.En raison de la grande disponibilité de nouveaux types de caméras capturant des informations géométriques supplémentaires, ainsi que de l'émergence de nouvelles modalités d'image telles que les champs de lumière et les images omnidirectionnelles, il est nécessaire de stocker et de diffuser une quantité énorme de hautes dimensions. Les exigences croissantes en matière de streaming et de stockage de ces nouvelles modalités d’image nécessitent de nouveaux outils de codage d’images exploitant la structure complexe de ces données. Cette thèse a pour but d'explorer de nouvelles approches basées sur les graphes pour adapter les techniques de codage de transformées d'image aux types de données émergents où les informations échantillonnées reposent sur des structures irrégulières. Dans une première contribution, de nouvelles transformées basées sur des graphes locaux sont conçues pour des représentations compactes des champs de lumière. En tirant parti d’une conception minutieuse des supports de transformées locaux et d’une procédure d’optimisation locale des fonctions de base , il est possible d’améliorer considérablement le compaction d'énergie. Néanmoins, la localisation des supports ne permettait pas d'exploiter les dépendances à long terme du signal. Cela a conduit à une deuxième contribution où différentes stratégies d'échantillonnage sont étudiées. Couplés à de nouvelles méthodes de prédiction, ils ont conduit à des résultats très importants en ce qui concerne la compression quasi sans perte de champs de lumière statiques. La troisième partie de la thèse porte sur la définition de sous-graphes optimisés en distorsion de débit pour le codage de contenu omnidirectionnel. Si nous allons plus loin et donnons plus de liberté aux graphes que nous souhaitons utiliser, nous pouvons apprendre ou définir un modèle (ensemble de poids sur les arêtes) qui pourrait ne pas être entièrement fiable pour la conception de transformées. La dernière partie de la thèse est consacrée à l'analyse théorique de l'effet de l'incertitude sur l'efficacité des transformées basées graphes

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. In the proposed CODEC I, block-based disparity estimation/compensation (DE/DC) is performed in pixel domain. However, this results in an inefficiency when DWT is applied on the whole predictive error image that results from the DE process. This is because of the existence of artificial block boundaries between error blocks in the predictive error image. To overcome this problem, in the remaining proposed CODECs, DE/DC is performed in the wavelet domain. Due to the multiresolution nature of the wavelet domain, two methods of disparity estimation and compensation have been proposed. The first method is performing DEJDC in each subband of the lowest/coarsest resolution level and then propagating the disparity vectors obtained to the corresponding subbands of higher/finer resolution. Note that DE is not performed in every subband due to the high overhead bits that could be required for the coding of disparity vectors of all subbands. This method is being used in CODEC II. In the second method, DEJDC is performed m the wavelet-block domain. This enables disparity estimation to be performed m all subbands simultaneously without increasing the overhead bits required for the coding disparity vectors. This method is used by CODEC III. However, performing disparity estimation/compensation in all subbands would result in a significant improvement of CODEC III. To further improve the performance of CODEC ill, pioneering wavelet-block search technique is implemented in CODEC IV. The pioneering wavelet-block search technique enables the right/predicted image to be reconstructed at the decoder end without the need of transmitting the disparity vectors. In proposed CODEC V, pioneering block search is performed in all subbands of DWT decomposition which results in an improvement of its performance. Further, the CODEC IV and V are able to perform at very low bit rates(< 0.15 bpp). In CODEC VI and CODEC VII, Overlapped Block Disparity Compensation (OBDC) is used with & without the need of coding disparity vector. Our experiment results showed that no significant coding gains could be obtained for these CODECs over CODEC IV & V. All proposed CODECs m this thesis are wavelet-based stereo image coding algorithms that maximise the flexibility and benefits offered by wavelet transform technology when applied to stereo imaging. In addition the use of a baseline-JPEG coding architecture would enable the easy adaptation of the proposed algorithms within systems originally built for DCT-based coding. This is an important feature that would be useful during an era where DCT-based technology is only slowly being phased out to give way for DWT based compression technology. In addition, this thesis proposed a stereo image coding algorithm that uses JPEG-2000 technology as the basic compression engine. The proposed CODEC, named RASTER is a rate scalable stereo image CODEC that has a unique ability to preserve the image quality at binocular depth boundaries, which is an important requirement in the design of stereo image CODEC. The experimental results have shown that the proposed CODEC is able to achieve PSNR gains of up to 3.7 dB as compared to directly transmitting the right frame using JPEG-2000

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2-D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. [Continues.

    BREAKPOINT DEPENDENT SCALABLE CODING OF OPTICAL FLOW VOLUME

    Full text link
    Motion representations that describe motion flow from one single anchor frame to multiple reference frames can be useful for many tasks such as motion compensation (MC) and frame-rate up-sampling. We construct an anchored, multi-flow representation which we refer to as an Optical Flow Volume (OFV). We explore the use of recent breakpoint dependent DWT (BD-DWT) being considered as part of extensions to JPEG 2000 for coding discontinuous media. Breakpoints describe discontinuity boundary geometry and we estimate a single set of breakpoints that can be shared by all individual flows of the OFV. Additionally, as flows are anchored at a common frame, we are able to readily explore inter-flow transforms. Rate scalable results show significant rate-distortion gains for BD-DWT over the 5/3 DWT commonly used with JPEG 2000. The validity and utility of OFV coding are confirmed with accompanying MC results

    State-of-the-Art and Trends in Scalable Video Compression with Wavelet Based Approaches

    Get PDF
    3noScalable Video Coding (SVC) differs form traditional single point approaches mainly because it allows to encode in a unique bit stream several working points corresponding to different quality, picture size and frame rate. This work describes the current state-of-the-art in SVC, focusing on wavelet based motion-compensated approaches (WSVC). It reviews individual components that have been designed to address the problem over the years and how such components are typically combined to achieve meaningful WSVC architectures. Coding schemes which mainly differ from the space-time order in which the wavelet transforms operate are here compared, discussing strengths and weaknesses of the resulting implementations. An evaluation of the achievable coding performances is provided considering the reference architectures studied and developed by ISO/MPEG in its exploration on WSVC. The paper also attempts to draw a list of major differences between wavelet based solutions and the SVC standard jointly targeted by ITU and ISO/MPEG. A major emphasis is devoted to a promising WSVC solution, named STP-tool, which presents architectural similarities with respect to the SVC standard. The paper ends drawing some evolution trends for WSVC systems and giving insights on video coding applications which could benefit by a wavelet based approach.partially_openpartially_openADAMI N; SIGNORONI. A; R. LEONARDIAdami, Nicola; Signoroni, Alberto; Leonardi, Riccard
    • …
    corecore