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Abstract—In intra video coding and image coding, the direc-
tional intra prediction is used to reduce spatial redundancy. Intra
prediction residuals are encoded with transforms. In this paper,
we develop transforms for directional intra prediction residuals.
Specifically, we observe that the directional intra prediction is
most effective in smooth regions and edges with a particular
direction. In the ideal case, edges can be predicted fairly
accurately with an accurate prediction direction. In practice,
an accurate prediction direction is hard to obtain. Based on
the inaccuracy of prediction direction that arises in the design
of many practical video coding systems, we can estimate the
residual covariance and propose a class of transforms based
on the estimated covariance function. The proposed method
is evaluated by the energy compaction property. Experimental
results show that with the proposed method, the same amount of
energy in directional intra prediction residuals can be preserved
with a significantly smaller number of transform coefficients.

Index Terms—Intra Coding, Image Coding, Intra Prediction
Residuals, Transform, Karhunen Loéve Transform

I. INTRODUCTION

In transform-based image and video coding, transforms are
applied to images and prediction residuals, and the transform
coefficients are encoded. With a proper choice of the trans-
form, a large amount of energy can be preserved with a small
number of large transform coefficients. This is known as the
energy compaction property of transforms [1], [2]. A better
energy compaction allows the image and video signal to be
encoded with fewer coefficients, while preserving a certain
level of image quality.

It is well known that for a random signal with a known
covariance function, the linear transform with the best energy
compaction property is the Karhunen Loeve transform (KLT)
[3]. The KLT of typical images has been investigated both the-
oretically and empirically. It has been noted that the KLT basis
functions of typical images are close to the two-dimensional
discrete cosine transform (2D-DCT) [4]. The 2D-DCT is also
the KLT of a random process characterized by the first-order
Markov model for images. As a reasonable approximation to
the KLT for images, the 2D-DCT is extensively used in many
image and video coding systems [S]-[10].

In various image and video coding systems, prediction is
used to reduce the correlation. The prediction residuals, rather
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than image intensities, are encoded by transforms. To compute
the optimal transform for residual signals, it is necessary
to obtain the covariance function. A substantial amount of
effort has been spent on modeling and estimating covariance
functions for prediction residuals. Successful systems with
transforms that consider the characteristics of residual signals
have been developed. They will be reviewed in Section II.

In this paper, we develop a new class of transforms for direc-
tional intra prediction residuals. Specifically, we observe that
the directional intra prediction is most effective for edges with
clear directionality in typical images. In the ideal case, edges
can be predicted fairly accurately if an accurate prediction
direction is used. In practice, an accurate prediction direction is
hard to obtain. Based on the inaccuracy of prediction direction,
we estimate the residual covariance as a function of the coded
boundary gradient. We propose to use the KLT of the estimated
residual covariance.

This paper is organized as follows. In Section II, we review
previous research on transform design for image and video
coding systems. In Section III, we discuss our proposed
method. We observe that directional intra prediction residuals
display non-stationary characteristics. These non-stationary
characteristics are modeled by prediction inaccuracy in the
proposed model. We derive the model for the horizontal
prediction direction and extend it to arbitrary prediction di-
rections. In Section IV, we show experimental results of the
proposed method based on the energy compaction property.
The proposed transforms are used in addition to the DCT or the
asymmetrical discrete sine transform (ADST). A considerable
amount of saving in the number of transform coefficients is
observed with the hybrid transform. In Section V, we conclude
the paper.

II. PREVIOUS RESEARCH

In image and video compression, transforms are used to
reduce the spatial correlation in images and prediction residu-
als. Transforms are designed primarily by covariance modeling
and covariance estimation. In the first approach, the transforms
are based on covariance modeling. In this covariance modeling
approach, the signals of interest are represented with a model.
The model results in a covariance function that is used to
obtain the KLT. In the work reported in [11], typical images are
represented with a first-order auto-regressive Markov model.
It is shown that the KLT basis functions of this model are
close to the DCT when the pixels are highly correlated. This
model is a reasonable approximation for typical image signals,
particularly in a local region. The 2D-DCT is extensively used
in many image and video coding systems.



In the recent work reported in [12], the covariance function
for intra prediction residuals is investigated. Based on the
observation that pixels in a block can be predicted more
accurately when they are closer to the boundary, a first-
order Markov model with the deterministic boundary is pro-
posed. This model results in the ADST. The ADST shows
a significant performance improvement over the DCT for
directional intra prediction residuals. As a result, it is used as
an alternative to the DCT to encode intra prediction residuals
in the HEVC system [8], [13].

Models for motion-compensated residuals have been inves-
tigated. In the work reported in [14]-[16], it is observed that
many one-dimensional anisotropic structures arise in motion-
compensated residuals. By modeling the motion-compensated
residuals with one-dimensional first-order Markov models
along a certain direction, a set of one-dimensional trans-
forms of many directions is derived for encoding motion-
compensated residuals. A significant coding gain was reported
with directional 1D transforms. Similar ideas have been ap-
plied to lifting wavelet transforms and disparity-compensated
residuals [17], [18].

In the work reported in [19]-[21], motion-compensated
residuals are modeled as stationary random processes. As
opposed to the first-order Markov model, different covariance
functions are proposed to account for the notion that the
motion-compensated residuals are less correlated than still
images.

The second approach is based on covariance estimation
from video data. The covariance estimation process can be
performed either through an offline process or on-the-fly
during the encoding and decoding processes. In the methods
based on offline covariance estimation, the covariance function
is computed by analyzing a set of typical video sequences in
an offline process. A set of signals that shares similar statistics
is used to compute the empirical covariance function, and this
covariance function is used to compute an empirical KLT. The
KLT is used in the video coding system. Since the transform is
computed offline, it does not change throughout the encoding
and decoding processes. A variety of transforms based on this
approach have been proposed. In the work reported in [22],
intra prediction residuals from the same prediction mode are
grouped to estimate the covariance function for that mode.
Based on the covariance function for each mode, a set of
mode-dependent transforms is proposed. In [23], multiple
transforms are proposed for each intra prediction mode. To
group the residual signals that share similar characteristics,
a method based on the K-Singular Value Decomposition (K-
SVD) [24] is used. In addition, multiple transforms for motion-
compensated residuals have also been investigated in [23].

In the methods based on online covariance estimation, the
covariance function is estimated during the encoding and
decoding processes from encoded video data. The KLT from
the estimated covariance is then obtained. The estimation
process may choose to use different portions of encoded
information for better adaptivity. As a result, transforms based
on online covariance estimation are usually adaptive. We note
that the coded information is known to both the encoder and
the decoder. In addition, the covariance estimation and the

KLT computation rules are synchronized at the encoder and
the decoder. As a result, the transmission of the transform
basis functions is usually not necessary. Many transforms in
this approach have been proposed. In the work reported in [25],
it is observed that the statistics of intra residual signals depend
on the template in the encoded region for the current block.
The covariance function is estimated from similar patches with
matching templates in certain regions of encoded video data.
In the work reported in [26], it is observed that the covariance
function of the motion-compensated residuals can be obtained
from the reference block used in motion-compensation. In
many cases, the motion-compensated residuals arise due to a
slight amount of translation and rotation of the displaced ref-
erence block. Based on these assumptions, a set of simulated
residual blocks are generated from the reference block. The
covariance function is estimated from the simulated residual
blocks for encoding the current block. In the work reported
in [27], the second-order statistics of the residual signals are
investigated. It is observed that a strong correlation exists
between the residual frame and the gradient information in
the reference frame. A non-linear relationship between the
residual variance and the gradient magnitude is obtained and
transmitted. To encode the current residual block, the KLT is
obtained from a covariance function

y(n,m) = p" oo,

The optimal p is estimated and transmitted along with the
non-linear function. The variance parameters o2 and o2, are
estimated from the gradient of the encoded reference frame
on a pixel-by-pixel basis.

In the methods discussed above, it is important to adapt the
transforms to the characteristics of the signals to be encoded.
This is achieved primarily with two approaches. In the first
approach, an adaptive transform is chosen from a predefined
set of transforms. In this case, designing a reasonable set
of transforms may become a difficult task. In the second
approach, the statistics is obtained directly from coded data.
In this case, it may be hard to ensure robust estimation based
on a limited number of available samples. These observations
motivate the modeling in the method that we propose in this
paper. In the proposed method, the process that generates
residual signals is first studied. A model that summarizes the
residual generation process is proposed. The proposed model
allows a more robust estimation of the covariance function
only from a small number of coded pixels. An estimated
covariance function is proposed based on the proposed model.
It is adaptive to the content to be encoded. This approach is
discussed in detail in the following sections.

III. PROPOSED METHOD

In this section, we describe the proposed transforms for
directional intra prediction residuals. First, we discuss the
characteristics of directional intra prediction residuals based
on empirical observations in Section III-A. In Section III-B,
we discuss the model that characterizes these empirical obser-
vations. Specifically, we model the directional intra prediction
as the result of prediction inaccuracy. From this model, we
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Fig. 1: Intra frame and intra prediction residual

can estimate the residual covariance based on the gradient of
the coded boundary. The proposed model is first discussed in
the horizontal prediction and extended to arbitrary directions.
The statistics of the proposed method are analyzed in Section
III-C. The KLT of the covariance function is proposed in
Section III-D. Finally, we discuss the gradient computation
on a discrete sampling grid in Section III-E.

A. Characteristics of directional intra prediction residuals

The characteristics of intra prediction residuals are signifi-
cantly different from those of still images. Figure 1 shows an
example of a still frame and its intra prediction residual.' For a
typical still image, we observe that image intensities tend to be
stationary in most smooth regions of the image. For the intra
prediction residuals, we observe that most regions are close
to zero, as a consequence of the effective intra prediction in
smooth regions. In the regions where sharp edges and busy
textures arise, the intra prediction becomes less effective, and
the residuals become much larger in these regions.

To carefully investigate the characteristics of directional
intra prediction residuals on a block-by-block basis, we show
a 4x4 block of intra prediction residual in Figure 2. In this 4x4
block, the vertical prediction is used. We note that intensities
of the directional prediction residuals tend to increase along
the prediction direction, as the distance from the boundary
increases. This observation is typical in many video sequences.
It has been investigated in previous research, such as the
work reported in [12]. In addition, we note that the residual
signal along the direction orthogonal to the prediction direction
displays significantly different characteristics. Specifically, the
residual intensities change abruptly along the direction orthog-
onal to the prediction direction, as shown in Figure 2. This
observation indicates that the residual signal may be highly
non-stationary in the direction orthogonal to the prediction
direction. The characteristics of the prediction residuals are
very sensitive, not only to the prediction direction, but to the
local change of the image data as well. In other words, the
characteristics of the prediction residuals should not only be
mode-dependent, but also data-dependent.

I'The residual frame is shown with an offset of 128, to show the negative
values.

Prediction
direction

Fig. 2: Illustration of the derivation

The non-stationarity of residual signals can be interpreted
by the prediction accuracy. In those regions where there are
sharp discontinuities in the original frame, the prediction tends
to be less accurate. Therefore, the residual intensities tend
to be large relative to smooth regions. We wish to use this
observation to predict the statistics of the residuals. This
observation will be useful only when we can relate the local
change of image data to coded data. We note that it is in
general not possible to estimate the statistics of the residual
signal from the same region that is yet to be encoded.

To estimate the residual statistics only from the coded
data, we consider the process of directional intra prediction.
Specifically, we consider the sensitivity of prediction to the
accuracy of the prediction direction. In a smooth region where
pixels share similar intensities, the prediction accuracy is less
sensitive to the prediction direction. On the other hand, in the
regions where sharp discontinuities exist in the original frame,
the prediction is very sensitive to the accuracy of the prediction
direction. A small disturbance of the prediction direction away
from the actual direction may lead to a large prediction error.
This observation leads to a model that estimates the residual
covariance only from the coded boundary. In the following
subsections, we discuss the model in detail.

B. Prediction inaccuracy modeling

In this section, we discuss the proposed model for direc-
tional intra prediction residuals. Specifically, we relate the
residual intensities to the prediction inaccuracy and boundary



gradient. We first derive a simplified model for the horizontal
prediction to illustrate the idea. We then extend the simplified
model to arbitrary prediction directions.

1) Model for horizontal prediction: We first establish the
notations for the proposed model. We consider a rectangular
block to be encoded, and we use the following notations:

e f(m,n): current block to be encoded

. f (m, n): predicted block, obtained by copying the coded
left boundary f(0,n) along the horizontal direction.

« r(m,n): residual block, obtained by subtracting f(m, n),
the predicted block, from f(m,n), the current block.

In the above notations, m is the horizontal coordinate,
m = 0 corresponds to the coded left boundary that is used
for prediction, n corresponds to the vertical coordinate and
m,n > 1 is the area to be encoded. This is illustrated in
Figure 3.
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Fig. 3: Illustration of the derivation: horizontal

We first note that the residual is obtained by subtracting the
prediction from the current block:

T(man) = f(ma n) - f(m7n) (1)
The prediction is obtained by horizontal prediction:
f(m,n) = f(0,n) 2)

In addition, we assume that the accurate prediction direction
is characterized by a random variable 6(m,n) taking small
values. This # can be assumed, for example, uniformly dis-
tributed in all directions near the horizontal direction. Suppose
we denote ng as the location of the accurate prediction
in the coded boundary. Ignoring the difference between the
intensities of the current pixel and the perfect prediction, we
obtain:

f(m,n) = f(0,na) 3)

where
na = n + mtan(6(m,n)) =~ n+ mb(m,n) 4)

for small #. This can be seen from the geometry shown in
Figure 3.
From equations (1), (2), (3) and (4), we obtain:

r(m,n) = f(m,n) — f(m,n) ~
~ (ng — n) 20 f( n)

for small @ and therefore small Ng — M.

Equation (5) indicates that the residual intensity is propor-
tional to the distance m and to the boundary gradient. In
addition, the residual intensity depends on how inaccurate
the prediction direction is away from the actual direction,
characterized by a random variable 6.

2) Model for arbitrary prediction directions: For an arbi-
trary prediction direction, the same idea from the horizontal
prediction applies. We can model the residual signal as a
function of boundary gradient and the prediction inaccuracy.
The geometry is slightly more involved. In Figure 4, we
illustrate the geometry for the derivation of the model. We
derive the model when the left boundary is used in prediction.
The upper boundary case can be derived by symmetry.
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Fig. 4: Illustration of the derivation: arbitrary

When an arbitrary prediction is used, the current pixel is
predicted from a pixel with a different boundary coordinate.
Therefore, n is replaced by n’. In addition, the displacement
from the accurate predictor to the predictor used is related to
0 in a different way. Consider the geometry shown in Figure
4. The arc length resulting from the inaccurate prediction
direction is d ~ L6. In this relation, L is the distance from
the residual pixel to its boundary predictor. From the geometry
shown in Figure 4, the displacement becomes n, —n = P
where « is the angle from the prediction direction to the norm
of the boundary.

Combining these results, we obtain the following estimation
by analogy to the horizontal case:

L 9f(0,n)

cos o on

r(m,n) = O(m,n) (6)
n’

Equation (6) indicates that the residual is proportional to the
boundary gradient, evaluated at the position of the predictor.
In addition, the residual is proportional to the distance from
the current pixel to its boundary predictor scaled by a factor
related with the prediction direction. We note that the general
case is consistent with the horizontal case. When the horizontal

prediction is used, & = 0, L = m and Equation (6) reduces



to Equation (5). As another example, when the diagonal
prediction is used, o = %. Equation (6) will be used to derive
the covariance function for the residual signal in Section III-C.

C. Statistics based on prediction inaccuracy

From Equation (6), the randomness of residual signal in
the proposed model originates from the randomness of the
prediction inaccuracy 6. This observation implies that we can
study the statistics of the residual signal by studying that
of prediction inaccuracy. In this section, we study the mean,
variance and covariance of the process, characterized by the
proposed model.

1) Mean: We first note that F [#(m,n)] = 0. This is
reasonable since the prediction direction inaccuracy would not
generally be biased towards any side. This leads to:

L 9f(0,n)

E[r(m,n)] = E[f(m,n)]=0 (7)

Cos v on

n’

2) Variance: Denote the variance function as o (m, n). We
take the expectation of r2, with respect to the random variable
6.

o*(m,n) = E [r*(m,n)]

on

This relationship indicates that the residual variance is propor-
tional to the squared distance and squared boundary gradient.
In other words, residual intensity tends to be large where the
boundary gradient at the predictor is large. In our model,
the boundary gradient is an estimation of the amount of
local change along the prediction direction. Therefore, this
relationship also indicates that the residual is large when the
estimated local change at the same location is large. This is
consistent with the intuition discussed in Section III-A.

3) Covariance: Since the random process is zero-mean,
Equation (6) and Equation (8) directly lead to the following
covariance function:

Cov [r(my,ny)r(ma,n2)] = a(my,ny)o(ma,n2)R 9)

where R is the factor that characterizes the correlation of the
prediction inaccuracy, defined as

__ El9(m1,n1)0(mg, ny)]
VE[02(m1, 1)) E[6%(m2, n2)]

The relationship in Equation (9) indicates that the covari-
ance function of the residual signal depends on the estimated
residual standard deviation o and the statistics of the prediction
inaccuracy R. Specifically, this equation indicates that the non-
stationarity of the residuals is reflected mostly by a drastic
change of the residual variance function. By choosing a
reasonable R, we can obtain a reasonable residual covariance
function.

Since most non-stationarity in the residual covariance func-
tion is reflected in a drastic change of the variance function,
the prediction inaccuracy is relatively stationary. Therefore,

(10)

we relate the prediction inaccuracy with the first-order Markov
process. This model is extensively used in image processing
applications to model stationary processes. To be specific, we
choose in this paper

|m1—ma|

E[0(m1,n1)0(m2,na)] = p| (11)

With the choice of the function in Equation (11), we can
see that when m; = ms and n; = no,

[n1—ng|
2

E[0?*(m1,n1)] = E[6%(mg,ns)] = 1 (12)
With Equations (10), (11) and (12),
R=p{" gy (13
Therefore, the residual covariance function is:
Cov [r(my, ny)r(ma,na)]
= a(ml,nl)a(mg,ng)p;m17m2| Ina—ne| (14)

We note that the covariance function with the same form is
proposed in [27] for encoding motion-compensated residuals.

D. Transforms based on the proposed covariance function

From the covariance function in Equation (14), we would
like to compute the KLT basis functions. The KLT is used
to encode the current residual block. In general, it is very
difficult to obtain a closed-form solution of the transform
basis functions based on the proposed covariance function.
To study the characteristics of the transform basis functions,
we consider two examples.

We first consider a simplified 1-D example. Suppose that
a zero-mean signal is denoted as z(n), where 0 < n < 3.
The variance of this signal is given by %(0) = ¢%(1) = 0
and 0%(2) = 0%(3) = 1. A typical transform that ignores
the variance information, such as the DCT, will in general
result in transform coefficients of length 4. However, if the
given variance information is considered, we can easily see
that 2(0) and x(1) are almost surely to be zero. Therefore, the
covariance function proposed in Equation (14) will result in a
transform with the first two basis functions supported only on
x(2) and z(3). This leads to significant transform coefficients
of length at most 2. In other words, by considering the
variance information, we are effectively adapting the transform
to the non-stationarity of the signal. Therefore, the resulting
transform tends to achieve much better energy compaction in
this example.

As another example, we consider the example shown in
Figure 5.2 In this example, we show the variance function
in a 4x4 block on the left side. The variance of the brighter
pixels is 0.9 while the variance of the darker pixels is 0.1. This
variance function is used to construct a covariance function in
Equation (14), with p; = pa2 = 0.99. On the right side, we
show the KLT basis functions from this covariance function.
From this figure, we observe that the region of support for
the first several basis functions is mostly within the region

2The transform basis functions are shown with an offset 0.5 to illustrate
negative values.
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Fig. 5: An example of the proposed transform basis functions

where the variance is large. This observation indicates that the
proposed transform is adapted well to the non-stationarity of
the signal. Specifically, the proposed transform first considers
encoding the pixels with large intensities and compresses most
of their energy into a small number of transform coefficients.

Finally, we note that the covariance function is estimated
only from the coded boundaries. Therefore, the same covari-
ance function can be estimated both at the encoder and the
decoder. We do not have to transmit any side information
associated with the transform coefficients.

To summarize, the proposed method consists of the follow-
ing steps:

Step A: For each pixel in the current block, estimate the
variance function according to Equation (8).

Step B: Using the variance function in Step A, construct
the covariance function according to Equation (14).

Step C: Compute the KLT of the covariance function in
Step B. Use this KLT to encode the current block.

E. Gradient computation on a discrete grid

In the proposed method, we derive the residual covariance
as a function of the boundary gradient. In an ideal situation,
the boundary gradient at any given location can be computed,
if coded boundary samples are dense enough. In practice, the
density of available samples is limited by the density of the
sampling grid. This limitation requires the boundary gradient
to be estimated from a small number of boundary pixels. In
this section, we discuss the gradient computation on a discrete
sampling grid.

Consider estimating the variance function in Equation (8).
In this equation, the boundary gradient is evaluated at location
n'. The value of n’ can be computed from the location of the
current pixel and the given prediction direction. The geometry

is shown in Figure 4.> While the coordinates of the current
pixel are always integers, n’ may not necessarily be an integer.
To compute the gradient for different possible values of n’, we
consider three typical cases.

1) n' is a positive integer: A positive integer n’ implies that
we are interested in evaluating the gradient on the sampling
grid. In this case, we consider estimating the gradient from
three reference samples. Suppose we predict from the left
boundary and we consider the block shown in Figure 6. To
evaluate the gradient at location (0,n’), we can estimate the
gradient as either f(0,n") — f(0,n’ — 1) or f(0,n' + 1) —
f(0,n”). From the proposed model, the prediction inaccuracy
is not biased towards the positive or the negative side of n'.
Therefore, the contribution of two estimations is likely to be
equal. Since the variance is proportional to the square of the
gradient, we can estimate the square of the gradient effectively
as the mean square of two estimations. In other words, when
n' is a positive integer:

|| = gl - o -
1
2

n’

+5 [0 +1) = f(0, 0" (15)

2) n' is not a integer: When n’ is not an integer, we
wish to evaluate the gradient in between two boundary pixels
f(0,[n']) and f(0, |n']). This is illustrated in Figure 7. In

this case, the squared gradient is simply given by:

{af(o,n)] — [£(0, [n']) = £(0, [0/ ])]2

n’!

o (16)

3We discuss the case when the left boundary is used, the upper boundary
case can be generalized by symmetry.
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Fig. 7: Gradient computation for non-integer n’

3) n' is zero (the corner predictor is used): In the case
when non horizontal/vertical prediction is chosen, the upper
left corner predictor is used when n’ = 0. This is shown
in Figure 8. In this case, the gradient can be estimated as
f(1,0)—£(0,0) when the accurate prediction is from the upper
boundary. On the other hand, the gradient can be estimated as
f£(0,1)— £(0,0) when the accurate prediction comes from the
left boundary. Both cases are equally likely to happen. As in
the case when n’ is a non-zero integer, we wish to estimate
the gradient by averaging two cases.

In Equation (8), the variance is scaled by a factor related
with the prediction angle «. The prediction angle is fixed when
only one boundary is used. In the case when n’ = 0, both
the upper boundary and the left boundary are involved in the
gradient computation. The prediction angle is different for the
upper boundary and for the left boundary. Therefore, we chose
to directly estimate the variance in this case. The variance is
estimated as:

2
) = 3 || (F0L0) = 0.0
+5 lmar| GO0 =007 an

where oy is the prediction angle from the upper boundary and
oy, is the prediction angle from the left boundary.
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Fig. 8: Gradient computation for n’ = 0

IV. EXPERIMENTAL RESULTS

In this section, we investigate the performance of the pro-
posed method. We discuss the experimental setup in Section
IV-A. We then show that the proposed method can effectively
estimate the residual statistics that reflect the characteristics of
the residual signals in Section IV-B. Then we investigate the
energy compaction property of the proposed method for the
rest of this section.

A. Experimental Setup

In the experiments that we perform, we obtain the direc-
tional intra prediction residuals according to the H.264 predic-
tion. The block size is fixed to 4x4 and all prediction modes
are used. Original samples are used to construct the directional
intra predictors and estimate the covariance function. The
effect of quantized boundary predictors used in practice will
be discussed in Section IV-G. For the proposed transforms,
we estimate the covariance function as discussed in Section
I1I. The parameter p is chosen to be 0.99.* In the covariance
estimation process, the coded boundary gradient may become
zero in boundary and smooth regions. For these cases, we use
the DCT or the ADST instead.

The energy compaction property of the proposed transforms
is investigated. Specifically, we use the proposed transforms
in hybrid with the DCT or the ADST [12]. We compare the
energy compaction of the hybrid transform to the DCT or
the ADST. We compute the preserved energy given the total
number of chosen coefficients. Transform coefficients with
largest magnitudes within a frame are chosen. In the case of
the hybrid transform, the transforms and transform coefficients
are selected, for each block, utilizing the algorithms proposed
in [28], [29]. We plot the preserved energy as a function of
the total number of chosen coefficients. The preserved energy

4We note that in our experiments, changing p within a reasonable range
does not significantly affect the results.
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Fig. 9: Comparison between the estimated variance and residual signal

is in terms of the percentage relative to the total energy. The
total number of chosen coefficients is presented in terms of the
percentage relative to the total number of coefficients. A larger
preserved energy value at the same percentage of chosen coef-
ficients indicates a higher performance in energy preservation.
It is evident in [28], [29] that the energy compaction capability
is a useful measure of performance in coding applications.

B. Variance Estimation

In the proposed method, the non-stationarity of residual
signals is reflected by the local change of the estimated vari-
ance function. An accurate estimation of the residual variance
would result in more compact transform coefficients. The ideal
estimated variance function should take large values precisely
where the residual is large. On the other hand, transforms that
do not consider the non-stationarity of residual signals, such
as the DCT, implicitly assume a uniform variance function.
The performance of the transform heavily depends on the
consistency between the estimated variance function and the
residual signal.

Figure 9 shows the estimated variance function and the
magnitude of the residual signal, from the intra frame of
the sequence “ice_qcif”. We first observe that the estimated
variance is visually consistent with the magnitude of the
residual signal.

To quantify the consistency between the magnitude of the
residual signal and the estimated variance function, we study
the cumulative energy of the residual signal. In Figure 10,
we show three cumulative energy curves. In the optimal
cumulative energy, we rank order the residual magnitude and
compute the cumulative energy from the largest residual pix-
els. In the cumulative energy from the estimated variance, we
rank order the estimated variance and compute the cumulative
energy from pixels with the largest estimated variance. In the
randomized cumulative energy, we compute the cumulative
energy from a randomly chosen set of pixels. The cumulative
energy indicates how informative the estimated variance is in
preserving the residual energy.

In the ideal case, suppose the estimated variance is very
accurate and precisely reflects the rank order information
of the residual magnitude. If we choose the residual pixels
from the largest estimated variance, the preserved energy as

a function of the number of preserved pixels is the largest.
It is represented by the optimal cumulative energy. On the
other hand, suppose the estimated variance is not related to
the residual magnitude. In this case, the cumulative energy will
be close to a randomized cumulative energy. The cumulative
energy from the estimated variance in practice should lie
between these two extremes. From Figure 10, we see that
the cumulative energy from the estimated variance in practice
is close to the optimal cumulative energy. This suggests
that the estimated variance is correlated with the residual
pixel magnitude. This observation implies that the estimated
variance is informative in predicting the magnitude of the
residual signals on a pixel-by-pixel basis. In other words,
the estimated variance from the prediction inaccuracy model
can estimate the non-stationarity of the residual signal. In
a practical video coding system, residual signals are usually
encoded with transforms. The estimated variance function can
be used to design more effective transforms for the residual
blocks.
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Fig. 10: Cumulative energy functions

For some blocks, the estimated variance function may not
be consistent with the magnitude of the residual signals.
An inconsistent estimation of the residual magnitude will
significantly degrade the performance. In our experiments, we
observe that replacing the DCT with the proposed KLT for
every block only slightly improves the energy compaction



performance on average. Replacing the ADST with the pro-
posed KLT for every block slightly degrades the performance
on average. In addition, the performance of using only the
KLT varies significantly for different sequences. For a more
robust performance, therefore, we use the proposed method in
hybrid with other robust transforms. For the rest of the paper,
we consider using the proposed transforms in hybrid with the
DCT or the ADST on a block-by-block basis.

C. Results: hybrid with the DCT

In this section, we compare the energy compaction perfor-
mance of two transform settings: 1) The 2D-DCT. 2) The
proposed transform in hybrid with the 2D-DCT.

Figure 11 shows the energy compaction performance of
the hybrid transform and the DCT, for the intra frame in the
sequence “carphone_QCIF”. From this figure, we see that the
same amount of energy can be preserved with a significantly
smaller number of transform coefficients by using the KLT in
addition to the DCT. The percentage of coefficient saving is
summarized in Table I.
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Fig. 11: Energy compaction performance of

the hybrid transform (vs DCT). Sequence: Car-
phone_QCIF

The same experiment was repeated for around fifty test
sequences with QCIF and CIF resolutions from the ‘“derf”
set [30]. The average coefficient savings relative to the DCT
is summarized in Table II. In this table, the percentage of
coefficient saving in the second row is measured when the
same amount of energy is preserved by two transforms. The
percentage of preserved coefficients for the DCT is specified
in the first row.

In addition, we investigate the frequency of choosing the
KLT in our experiments. For the sequences in our tests, the
KLT is chosen for 45.67% of the non-zero blocks, when
around 5% of the coefficients is preserved. In these blocks,
the proposed transform is more effective than the DCT.

In another experiment, we show the scatter plot between the
frequency of choosing the KLT and the coefficient saving. This
is shown in Figure 12. In this figure, each circle represents a
test sequence. From this figure, a positive correlation appears
between the frequency of choosing the KLT and the coefficient
saving. This indicates that more coefficients tend to be saved

when the proposed model is effective in capturing more non-
stationarity of the residual signal. This is consistent with the
insights of the proposed method.
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Fig. 12: Coefficient saving to the frequency of
choosing the KLT

D. Results: hybrid with the ADST

In this section, we compare the energy compaction per-
formance of two transform settings: 1) The ADST. 2) The
proposed transform in hybrid with the ADST.

Figure 13 shows the energy compaction performance of
two transform settings, for the intra frame in the sequence
“carphone_QCIF”. Similar to the case of the DCT, we observe
a significant amount of coefficient saving when the proposed
method is used in addition to the ADST. The percentage of
coefficient saving is summarized in Table III.

The same experiment was repeated for the same sequence
set. The average coefficient savings relative to the ADST is
summarized in Table IV.
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Fig. 13: Energy compaction performance of the

hybrid transform (vs ADST). Sequence: Car-

phone_QCIF

We also investigate the frequency of choosing the KLT vs
the ADST. For the sequences in our tests, the KLT is chosen
for 38.71% of the non-zero blocks, when around 5% of the
coefficients is preserved. Compared to the case when the KLT
is used in hybrid with the DCT, the frequency of choosing the



Percentage of preserved energy (roughly)

60% | 70% | 80% | 90%

Percentage of coefficient saving

18.6% | 21.9% | 23.1% | 23.5%

TABLE I: Coefficient saving of the hybrid transform relative to the DCT. Sequence: Carphone_QCIF

Percentage of preserved coefficients (roughly)

3% 5% 7% 9%

Percentage of coefficient saving

15.6% | 16.1% | 16.0% | 15.4%

TABLE II: Average coefficient saving of the hybrid transform relative to the DCT.

Percentage of preserved energy (roughly)

60% | 70% | 80% | 90%

Percentage of coefficient saving

13.1% | 13.9% | 15.1% | 16.4%

TABLE III: Coefficient saving of the hybrid transform relative to the ADST. Sequence: Carphone_QCIF

Percentage of preserved coefficients (roughly)

3% 5% 7% 9%

Percentage of coefficient saving

12.8% | 12.7% | 12.8% | 12.6%

TABLE IV: Average coefficient saving of the hybrid transform relative to the ADST.

KLT is slightly smaller. Still, the frequency of choosing the
KLT is significant. This indicates that the proposed transforms
are still effective when the ADST replaces the DCT.

The same scatter plot between the frequency of choosing
the KLT and the coefficient saving is shown for the case of
the ADST in Figure 14. A similar positive correlation appears
between the two factors.
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choosing the KLT

E. Summary of the energy compaction performance

In this section, we summarize the energy compaction per-
formance of the proposed transform. Specifically, we compare
the energy compaction performance of the four transforms
discussed in previous sections. They are 1) DCT, 2) ADST,
3) KLT hybrid with DCT and 4) KLT hybrid with DST.
We measure the performance in terms of the percentage of
coefficients used to preserve the same amount of energy
relative to the DCT. The coefficient saving is measured when
the same energy is preserved with 5% DCT coefficients,

averaged over the sequences that we tested. The result is shown
in Figure 15.

From the figure, we see that the DCT on average results
in the worst performance. Replacing the DCT with the ADST
slightly improves the performance as expected. When the KLT
is used in addition to either the DCT or the ADST, the perfor-
mance significantly improves. This is because the prediction
inaccuracy model is effective in many typical residual blocks.
The covariance estimated from this model captures the non-
stationarity of residual signals that neither the DCT nor the
ADST can capture. In fact, when the KLT is used, whether it is
hybrid with DCT or the ADST only makes a small difference.
This implies that much non-stationarity in the residual signals
is captured by the proposed KLT. The remaining stationary
blocks can be encoded with a reasonable stationary transform
and the choice of such transform is not as important.

FE. Effectiveness of the proposed KLT

In our experiments, the KLT is used in hybrid with the
ADST or the DCT. From the choice of the transform in each
block, we can investigate how effective the KLT is for a typical
frame.

Figure 16 shows the choice of transform for an intra frame
“ice_CIF” when the KLT is used in hybrid with the ADST. We
show the intra frame, blocks that select the KLT and blocks
that select the ADST. 3 We first observe that the KLT is chosen
in those regions with sharp discontinuities and directional
structures. We can visually reconstruct the contours of the
objects from those blocks that choose the KLT. The proposed
model is expected to be effective in these regions. On the
other hand, the KLT is less effective in the regions where the
ADST is chosen. From the figure, we see that these blocks are

SFor the blocks with very small residual energy, all transform coefficients
are below the threshold and they are treated as zero blocks. We only show
the intra blocks that have significant residual transform coefficients
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distributed more randomly than the KLT blocks. Most of these
blocks are relatively stationary, have complicated textures or
discontinuities with less regular directionality. We observe
similar patterns for other intra frames in our experiments.

G. Other comments

The proposed method is currently evaluated by the energy
compaction property. When the proposed method is imple-
mented in a video coding system, some practical issues arise.

First, we note that in a video coding system with hybrid
transforms, we need to transmit 1-bit side information for each
non-zero block, to indicate which transform to use. It is evident
in the work reported in [14], [15], [17], [28], [29] that this
small overhead is not likely to significantly affect the large
positive gain from the better energy compaction.

Second, the entropy coding of the significant transform
coefficients is ignored in the energy compaction analysis. In
a practical video coding system, we may scan the transform
coefficients in a specific order and entropy code the transform
coefficients. The order of scanning can be determined by the
expected magnitude of transform coefficients. This information
is available when computing the KLT basis functions from the
covariance function.

Third, the covariance function is estimated from coded
boundaries in a video coding system. The coded boundaries
may be distorted due to quantization in the coded blocks. This
distortion may potentially affect the accuracy of the covariance
estimation and hence the performance of the transform. To see
the performance under the distorted estimation, we repeated
the experiments by estimating the covariance function from
the distorted boundary information. Specifically, we estimated
the covariance function from boundaries of coded frames
processed by the H.264 system, under a reasonable range of
QP. We did not observe a significant amount of performance
degradation in the experiments.

V. CONCLUSIONS

In this paper, we propose a class of transforms for direc-
tional intra prediction residuals based on prediction inaccuracy
modeling. In this method, we first model the process that
generates the directional intra prediction residuals. We then
derive the covariance function by considering the prediction
inaccuracy. The covariance function is estimated as a func-
tion of the gradient of coded boundaries. The KLT of the
covariance function is used to encode the residual block.
The proposed transforms can effectively estimate the residual
covariance in many typical intra prediction residual blocks.
The proposed transform can save a significant amount of
transform coefficients while preserving the same amount of
residual energy.

In addition to the proposed transforms for intra prediction
residuals, the prediction inaccuracy modeling can be used as
a robust estimation method for other transforms. The predic-
tion inaccuracy analysis can be useful when other prediction
methods are used. For example, we are interested in investi-
gating transforms based on prediction inaccuracy for motion-
compensated residuals, resolution-enhancement residuals and
binocular prediction residuals.
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