1,628 research outputs found

    Transforming graph states to Bell-pairs is NP-Complete

    Get PDF
    Critical to the construction of large scale quantum networks, i.e. a quantum internet, is the development of fast algorithms for managing entanglement present in the network. One fundamental building block for a quantum internet is the distribution of Bell pairs between distant nodes in the network. Here we focus on the problem of transforming multipartite entangled states into the tensor product of bipartite Bell pairs between specific nodes using only a certain class of local operations and classical communication. In particular we study the problem of deciding whether a given graph state, and in general a stabilizer state, can be transformed into a set of Bell pairs on specific vertices using only single-qubit Clifford operations, single-qubit Pauli measurements and classical communication. We prove that this problem is NP-Complete

    Graphical description of the action of Clifford operators on stabilizer states

    Full text link
    We introduce a graphical representation of stabilizer states and translate the action of Clifford operators on stabilizer states into graph operations on the corresponding stabilizer-state graphs. Our stabilizer graphs are constructed of solid and hollow nodes, with (undirected) edges between nodes and with loops and signs attached to individual nodes. We find that local Clifford transformations are completely described in terms of local complementation on nodes and along edges, loop complementation, and change of node type or sign. Additionally, we show that a small set of equivalence rules generates all graphs corresponding to a given stabilizer state; we do this by constructing an efficient procedure for testing the equality of any two stabilizer graphs.Comment: 14 pages, 8 figures. Version 2 contains significant changes. Submitted to PR

    Scheme for constructing graphs associated with stabilizer quantum codes

    Full text link
    We propose a systematic scheme for the construction of graphs associated with binary stabilizer codes. The scheme is characterized by three main steps: first, the stabilizer code is realized as a codeword-stabilized (CWS) quantum code; second, the canonical form of the CWS code is uncovered; third, the input vertices are attached to the graphs. To check the effectiveness of the scheme, we discuss several graphical constructions of various useful stabilizer codes characterized by single and multi-qubit encoding operators. In particular, the error-correcting capabilities of such quantum codes are verified in graph-theoretic terms as originally advocated by Schlingemann and Werner. Finally, possible generalizations of our scheme for the graphical construction of both (stabilizer and nonadditive) nonbinary and continuous-variable quantum codes are briefly addressed.Comment: 42 pages, 12 figure

    Hard limits on the postselectability of optical graph states

    Get PDF
    Coherent control of large entangled graph states enables a wide variety of quantum information processing tasks, including error-corrected quantum computation. The linear optical approach offers excellent control and coherence, but today most photon sources and entangling gates---required for the construction of large graph states---are probabilistic and rely on postselection. In this work, we provide proofs and heuristics to aid experimental design using postselection. We derive a fundamental limitation on the generation of photonic qubit states using postselected entangling gates: experiments which contain a cycle of postselected gates cannot be postselected. Further, we analyse experiments that use photons from postselected photon pair sources, and lower bound the number of classes of graph state entanglement that are accessible in the non-degenerate case---graph state entanglement classes that contain a tree are are always accessible. Numerical investigation up to 9-qubits shows that the proportion of graph states that are accessible using postselection diminishes rapidly. We provide tables showing which classes are accessible for a variety of up to nine qubit resource states and sources. We also use our methods to evaluate near-term multi-photon experiments, and provide our algorithms for doing so.Comment: Our manuscript comprises 4843 words, 6 figures, 1 table, 47 references, and a supplementary material of 1741 words, 2 figures, 1 table, and a Mathematica code listin

    Photonic multipartite entanglement conversion using nonlocal operations

    Full text link
    We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the GHZ and symmetric Dicke state. We also show how the gate can be incorporated into extended graph state networks, and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.Comment: 10 pages, 6 figures, correction of reference list, add Journal ref. and DO

    Deterministic construction of arbitrary WW states with quadratically increasing number of two-qubit gates

    Full text link
    We propose a quantum circuit composed of cNOTcNOT gates and four single-qubit gates to generate a WW state of three qubits. This circuit was then enhanced by integrating two-qubit gates to create a WW state of four and five qubits. After a couple of enhancements, we show that an arbitrary WW state can be generated depending only on the degree of enhancement. The generalized formula for the number of two-qubit gates required is given, showing that an nn-qubit WW-state generation can be achieved with quadratically increasing number of two-qubit gates. Also, the practical feasibility is discussed regarding photon sources and various applications of cNOTcNOT gates

    Universal MBQC with generalised parity-phase interactions and Pauli measurements

    Get PDF
    We introduce a new family of models for measurement-based quantum computation which are deterministic and approximately universal. The resource states which play the role of graph states are prepared via 2-qubit gates of the form exp(iπ2nZZ)\exp(-i\frac{\pi}{2^{n}} Z\otimes Z). When n=2n = 2, these are equivalent, up to local Clifford unitaries, to graph states. However, when n>2n > 2, their behaviour diverges in two important ways. First, multiple applications of the entangling gate to a single pair of qubits produces non-trivial entanglement, and hence multiple parallel edges between nodes play an important role in these generalised graph states. Second, such a state can be used to realise deterministic, approximately universal computation using only Pauli ZZ and XX measurements and feed-forward. Even though, for n>2n > 2, the relevant resource states are no longer stabiliser states, they admit a straightforward, graphical representation using the ZX-calculus. Using this representation, we are able to provide a simple, graphical proof of universality. We furthermore show that for every n>2n > 2 this family is capable of producing all Clifford gates and all diagonal gates in the nn-th level of the Clifford hierarchy.Comment: 19 pages, accepted for publication in Quantum (quantum-journal.org). A previous version of this article had the title: "Universal MBQC with M{\o}lmer-S{\o}rensen interactions and two measurement bases
    corecore