224 research outputs found

    Transformers as Soft Reasoners over Language

    Full text link
    Beginning with McCarthy's Advice Taker (1959), AI has pursued the goal of providing a system with explicit, general knowledge and having the system reason over that knowledge. However, expressing the knowledge in a formal (logical or probabilistic) representation has been a major obstacle to this research. This paper investigates a modern approach to this problem where the facts and rules are provided as natural language sentences, thus bypassing a formal representation. We train transformers to reason (or emulate reasoning) over these sentences using synthetically generated data. Our models, that we call RuleTakers, provide the first empirical demonstration that this kind of soft reasoning over language is learnable, can achieve high (99%) accuracy, and generalizes to test data requiring substantially deeper chaining than seen during training (95%+ scores). We also demonstrate that the models transfer well to two hand-authored rulebases, and to rulebases paraphrased into more natural language. These findings are significant as it suggests a new role for transformers, namely as limited "soft theorem provers" operating over explicit theories in language. This in turn suggests new possibilities for explainability, correctability, and counterfactual reasoning in question-answering.Comment: IJCAI 202

    Reasoning over Description Logic-based Contexts with Transformers

    Full text link
    One way that the current state of the art measures the reasoning ability of transformer-based models is by evaluating accuracy in downstream tasks like logical question answering or proof generation over synthetic contexts expressed in natural language. However, most of the contexts used are in practice very simple; in most cases, they are generated from short first-order logic sentences with only a few logical operators and quantifiers. In this work, we seek to answer the question how well a transformer-based model will perform reasoning over expressive contexts. For this purpose, we construct a synthetic natural language question-answering dataset, generated by description logic knowledge bases. For the generation of the knowledge bases, we use the expressive language ALCQ\mathcal{ALCQ}. The resulting dataset contains 384K examples, and increases in two dimensions: i) reasoning depth, and ii) length of sentences. We show that the performance of our DeBERTa-based model, DELTAM_M, is marginally affected when the reasoning depth is increased and it is not affected at all when the length of the sentences is increasing. We also evaluate the generalization ability of the model on reasoning depths unseen at training, both increasing and decreasing, revealing interesting insights into the model's adaptive generalization abilities

    Braid: Weaving Symbolic and Neural Knowledge into Coherent Logical Explanations

    Full text link
    Traditional symbolic reasoning engines, while attractive for their precision and explicability, have a few major drawbacks: the use of brittle inference procedures that rely on exact matching (unification) of logical terms, an inability to deal with uncertainty, and the need for a precompiled rule-base of knowledge (the "knowledge acquisition" problem). To address these issues, we devise a novel logical reasoner called Braid, that supports probabilistic rules, and uses the notion of custom unification functions and dynamic rule generation to overcome the brittle matching and knowledge-gap problem prevalent in traditional reasoners. In this paper, we describe the reasoning algorithms used in Braid, and their implementation in a distributed task-based framework that builds proof/explanation graphs for an input query. We use a simple QA example from a children's story to motivate Braid's design and explain how the various components work together to produce a coherent logical explanation. Finally, we evaluate Braid on the ROC Story Cloze test and achieve close to state-of-the-art results while providing frame-based explanations.Comment: Accepted at AAAI-202

    Measuring Systematic Generalization in Neural Proof Generation with Transformers

    Full text link
    We are interested in understanding how well Transformer language models (TLMs) can perform reasoning tasks when trained on knowledge encoded in the form of natural language. We investigate systematic generalization abilities on an inductive logical reasoning task in natural language, which involves reasoning over relationships between entities grounded in first-order logical proofs. Specifically, we perform soft theorem-proving by leveraging TLMs to generate logical proofs represented in natural language. We systematically test proof generation capabilities, along with inference capabilities leveraging the generated proofs. We observe length-generalization issues in proof generation and inference when evaluated on longer-than-trained sequences. However, we observe TLMs improve their generalization performance after being exposed to longer, exhaustive proofs. In addition, we discover that TLMs are able to generalize better using backward-chaining proofs compared to their forward-chaining counterparts, while they find it easier to generate forward chaining proofs. We observe that models that are not trained to generate proofs are better at generalizing to problems based on longer proofs. This result suggests that Transformers have efficient, yet not interpretable reasoning strategies internally. These results also highlight the systematic generalization issues in TLMs in the context of logical reasoning, and we believe this work will motivate deeper inspection of their underlying reasoning strategies.Comment: NeurIPS 2020; 17 pages; 9 figures; 6 table

    DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained Neural Text2Text Language Models

    Get PDF
    In this paper, we present and implement a multi-dimensional, modular framework for performing deep argument analysis (DeepA2) using current pre-trained language models (PTLMs). ArgumentAnalyst – a T5 model [Raffel et al. 2020] set up and trained within DeepA2 – reconstructs argumentative texts, which advance an informal argumentation, as valid arguments: It inserts, e.g., missing premises and conclusions, formalizes inferences, and coherently links the logical reconstruction to the source text. We create a synthetic corpus for deep argument analysis, and evaluate ArgumentAnalyst on this new dataset as well as on existing data, specifically EntailmentBank [Dalvi et al. 2021]. Our empirical findings vindicate the overall framework and highlight the advantages of a modular design, in particular its ability to emulate established heuristics (such as hermeneutic cycles), to explore the model’s uncertainty, to cope with the plurality of correct solutions (underdetermination), and to exploit higher-order evidence

    OPT-R: Exploring the Role of Explanations in Finetuning and Prompting for Reasoning Skills of Large Language Models

    Full text link
    In this paper, we conduct a thorough investigation into the reasoning capabilities of Large Language Models (LLMs), focusing specifically on the Open Pretrained Transformers (OPT) models as a representative of such models. Our study entails finetuning three different sizes of OPT on a carefully curated reasoning corpus, resulting in two sets of finetuned models: OPT-R, finetuned without explanations, and OPT-RE, finetuned with explanations. We then evaluate all models on 57 out-of-domain tasks drawn from the SUPER-NATURALINSTRUCTIONS benchmark, covering 26 distinct reasoning skills, utilizing three prompting techniques. Through a comprehensive grid of 27 configurations and 6,156 test evaluations, we investigate the dimensions of finetuning, prompting, and scale to understand the role of explanations on different reasoning skills. Our findings reveal that having explanations in the fewshot exemplar has no significant impact on the model's performance when the model is finetuned, while positively affecting the non-finetuned counterpart. Moreover, we observe a slight yet consistent increase in classification accuracy as we incorporate explanations during prompting and finetuning, respectively. Finally, we offer insights on which skills benefit the most from incorporating explanations during finetuning and prompting, such as Numerical (+20.4%) and Analogical (+13.9%) reasoning, as well as skills that exhibit negligible or negative effects.Comment: Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE) at ACL 202

    DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained Neural Text2Text Language Models

    Get PDF
    In this paper, we present and implement a multi-dimensional, modular framework for performing deep argument analysis (DeepA2) using current pre-trained language models (PTLMs). ArgumentAnalyst -- a T5 model (Raffel et al. 2020) set up and trained within DeepA2 -- reconstructs argumentative texts, which advance an informal argumentation, as valid arguments: It inserts, e.g., missing premises and conclusions, formalizes inferences, and coherently links the logical reconstruction to the source text. We create a synthetic corpus for deep argument analysis, and evaluate ArgumentAnalyst on this new dataset as well as on existing data, specifically EntailmentBank (Dalvi et al. 2021). Our empirical findings vindicate the overall framework and highlight the advantages of a modular design, in particular its ability to emulate established heuristics (such as hermeneutic cycles), to explore the model's uncertainty, to cope with the plurality of correct solutions (underdetermination), and to exploit higher-order evidence.Comment: A Demo is available at https://huggingface.co/spaces/debatelab/deepa2-demo , the model can be downloaded from https://huggingface.co/debatelab/argument-analyst , and the datasets can be accessed at https://huggingface.co/datasets/debatelab/aaa
    • …
    corecore