5,212 research outputs found

    Acceleration of Histogram-Based Contrast Enhancement via Selective Downsampling

    Full text link
    In this paper, we propose a general framework to accelerate the universal histogram-based image contrast enhancement (CE) algorithms. Both spatial and gray-level selective down- sampling of digital images are adopted to decrease computational cost, while the visual quality of enhanced images is still preserved and without apparent degradation. Mapping function calibration is novelly proposed to reconstruct the pixel mapping on the gray levels missed by downsampling. As two case studies, accelerations of histogram equalization (HE) and the state-of-the-art global CE algorithm, i.e., spatial mutual information and PageRank (SMIRANK), are presented detailedly. Both quantitative and qualitative assessment results have verified the effectiveness of our proposed CE acceleration framework. In typical tests, computational efficiencies of HE and SMIRANK have been speeded up by about 3.9 and 13.5 times, respectively.Comment: accepted by IET Image Processin

    Contrast Enhancement of Brightness-Distorted Images by Improved Adaptive Gamma Correction

    Full text link
    As an efficient image contrast enhancement (CE) tool, adaptive gamma correction (AGC) was previously proposed by relating gamma parameter with cumulative distribution function (CDF) of the pixel gray levels within an image. ACG deals well with most dimmed images, but fails for globally bright images and the dimmed images with local bright regions. Such two categories of brightness-distorted images are universal in real scenarios, such as improper exposure and white object regions. In order to attenuate such deficiencies, here we propose an improved AGC algorithm. The novel strategy of negative images is used to realize CE of the bright images, and the gamma correction modulated by truncated CDF is employed to enhance the dimmed ones. As such, local over-enhancement and structure distortion can be alleviated. Both qualitative and quantitative experimental results show that our proposed method yields consistently good CE results

    Entropy Based Robust Watermarking Algorithm

    Get PDF
    Tänu aina kasvavale multimeedia andmeedastus mahtudele Internetis, on esile kerkinud mured turvalisusest ja piraatlusest. Digitaalse meedia paljundamise ja muutmise maht on loonud vajaduse digitaalse meedia vesimärgistamise järgi. Selles töös on tutvustatud vastupidavaid vesimärkide lisamise algoritme, mis lisavad vesimärgid madala entroopiaga pildi osadesse. Välja pakutud algoritmides jagatakse algne pilt blokkidesse ning arvutatakse iga bloki entroopia. Kõikide blokkide keskmine entroopia väärtus valitakse künniseks, mille järgi otsustatakse, millistesse blokkidesse vesimärk lisada. Kõik blokid, mille entroopia on väiksem kui künnis, viiakse signaali sageduse kujule kasutades Discrete Wavelet Transform algoritmi. Madala sagedusega sagedusvahemikule rakendatakse Chirp Z-Transform algoritmi ja saadud tulemusele LU-dekompositsiooni või QR-dekompositsiooni. Singular Value Decomposition meetodi rakendamisel diagonaalmaatriksile, mis saadi eelmisest sammust, saadakse iga bloki vastav väärtus. Vesimärk lisatakse pildile, liites iga bloki arvutatud väärtusele vesimärgi Singular Value Decomposition meetodi tulemused. Kirjeldatud algoritme testiti ning võrreldi teiste tavapärast ning uudsete vesimärkide lisamise tehnoloogiatega. Kvantitatiivsed ja kvalitatiivsed eksperimendid näitavad, et välja pakutud meetodid on tajumatud ning vastupidavad signaali töötlemise rünnakutele.With growth of digital media distributed over the Internet, concerns about security and piracy have emerged. The amount of digital media reproduction and tampering has brought a need for content watermarking. In this work, multiple robust watermarking algorithms are introduced. They embed watermark image into singular values of host image’s blocks with low entropy values. In proposed algorithms, host image is divided into blocks, and the entropy of each block is calculated. The average of all entropies indicates the chosen threshold value for selecting the blocks in which watermark image should be embedded. All blocks with entropy lower than the calculated threshold are decomposed into frequency subbands using discrete wavelet transform (DWT). Subsequently chirp z-transform (CZT) is applied to the low-frequency subband followed by an appropriate matrix decomposition such as lower and upper decomposition (LUD) or orthogonal-triangular decomposition (QR decomposition). By applying singular value decomposition (SVD) to diagonal matrices obtained by the aforementioned matrix decompositions, the singular values of each block are calculated. Watermark image is embedded by adding singular values of the watermark image to singular values of the low entropy blocks. Proposed algorithms are tested on many host and watermark images, and they are compared with conventional and other state-of-the-art watermarking techniques. The quantitative and qualitative experimental results are indicating that the proposed algorithms are imperceptible and robust against many signal processing attacks

    A Robust Color Image Watermarking Scheme Using Entropy and QR Decomposition

    Get PDF
    Internet has affected our everyday life drastically. Expansive volumes of information are exchanged over the Internet consistently which causes numerous security concerns. Issues like content identification, document and image security, audience measurement, ownership, copyrights and others can be settled by using digital watermarking. In this work, robust and imperceptible non-blind color image watermarking algorithm is proposed, which benefit from the fact that watermark can be hidden in different color channel which results into further robustness of the proposed technique to attacks. Given method uses some algorithms such as entropy, discrete wavelet transform, Chirp z-transform, orthogonal-triangular decomposition and Singular value decomposition in order to embed the watermark in a color image. Many experiments are performed using well-known signal processing attacks such as histogram equalization, adding noise and compression. Experimental results show that proposed scheme is imperceptible and robust against common signal processing attacks
    corecore