1,014 research outputs found

    PEACE: Prototype lEarning Augmented transferable framework for Cross-domain rEcommendation

    Full text link
    To help merchants/customers to provide/access a variety of services through miniapps, online service platforms have occupied a critical position in the effective content delivery, in which how to recommend items in the new domain launched by the service provider for customers has become more urgent. However, the non-negligible gap between the source and diversified target domains poses a considerable challenge to cross-domain recommendation systems, which often leads to performance bottlenecks in industrial settings. While entity graphs have the potential to serve as a bridge between domains, rudimentary utilization still fail to distill useful knowledge and even induce the negative transfer issue. To this end, we propose PEACE, a Prototype lEarning Augmented transferable framework for Cross-domain rEcommendation. For domain gap bridging, PEACE is built upon a multi-interest and entity-oriented pre-training architecture which could not only benefit the learning of generalized knowledge in a multi-granularity manner, but also help leverage more structural information in the entity graph. Then, we bring the prototype learning into the pre-training over source domains, so that representations of users and items are greatly improved by the contrastive prototype learning module and the prototype enhanced attention mechanism for adaptive knowledge utilization. To ease the pressure of online serving, PEACE is carefully deployed in a lightweight manner, and significant performance improvements are observed in both online and offline environments.Comment: Accepted by WSDM 202

    Enhancing Representation in Radiography-Reports Foundation Model: A Granular Alignment Algorithm Using Masked Contrastive Learning

    Full text link
    Recently, multi-modal vision-language foundation models have gained significant attention in the medical field. While these models offer great opportunities, they still face a number of challenges, such as the requirement for fine-grained knowledge understanding in computer-aided diagnosis and capability of utilizing very limited or no task-specific labeled data in real-world clinical applications. In this study, we present MaCo, a novel multi-modal medical foundation model that explores masked contrastive learning to achieve granular alignment and zero-shot learning for a variety of medical imaging tasks. MaCo incorporates a correlation weighting mechanism to adjust the correlation between masked image patches and their corresponding reports, thereby enhancing the representation learning capabilities. We evaluate MaCo on six well-known open-source X-ray datasets, and the experimental results show it outperforms seven state-of-the-art approaches for classification, segmentation, and zero-shot phase grounding, demonstrating its great potential to promote a wide range of medical image analysis tasks

    Instance Adaptive Prototypical Contrastive Embedding for Generalized Zero Shot Learning

    Full text link
    Generalized zero-shot learning(GZSL) aims to classify samples from seen and unseen labels, assuming unseen labels are not accessible during training. Recent advancements in GZSL have been expedited by incorporating contrastive-learning-based (instance-based) embedding in generative networks and leveraging the semantic relationship between data points. However, existing embedding architectures suffer from two limitations: (1) limited discriminability of synthetic features' embedding without considering fine-grained cluster structures; (2) inflexible optimization due to restricted scaling mechanisms on existing contrastive embedding networks, leading to overlapped representations in the embedding space. To enhance the quality of representations in the embedding space, as mentioned in (1), we propose a margin-based prototypical contrastive learning embedding network that reaps the benefits of prototype-data (cluster quality enhancement) and implicit data-data (fine-grained representations) interaction while providing substantial cluster supervision to the embedding network and the generator. To tackle (2), we propose an instance adaptive contrastive loss that leads to generalized representations for unseen labels with increased inter-class margin. Through comprehensive experimental evaluation, we show that our method can outperform the current state-of-the-art on three benchmark datasets. Our approach also consistently achieves the best unseen performance in the GZSL setting.Comment: 7 pages, 4 figures. Accepted in IJCAI 2023 Workshop on Generalizing from Limited Resources in the Open Worl

    Exploiting the Relationship Between Visual and Textual Features in Social Networks for Image Classification with Zero-Shot Deep Learning

    Get PDF
    One of the main issues related to unsupervised machine learning is the cost of processing and extracting useful information from large datasets. In this work, we propose a classifier ensemble based on the transferable learning capabilities of the CLIP neural network architecture in multimodal environments (image and text) from social media. For this purpose, we used the InstaNY100K dataset and proposed a validation approach based on sampling techniques. Our experiments, based on image classification tasks according to the labels of the Places dataset, are performed by first considering only the visual part, and then adding the associated texts as support. The results obtained demonstrated that trained neural networks such as CLIP can be successfully applied to image classification with little fine-tuning, and considering the associated texts to the images can help to improve the accuracy depending on the goal. The results demonstrated what seems to be a promising research direction.This work was funded by the University of Alicante UAPOSTCOVID19-10 grant for “Collecting and publishing open data for the revival of the tourism sector post-COVID-19” project

    GENNAPE: Towards Generalized Neural Architecture Performance Estimators

    Full text link
    Predicting neural architecture performance is a challenging task and is crucial to neural architecture design and search. Existing approaches either rely on neural performance predictors which are limited to modeling architectures in a predefined design space involving specific sets of operators and connection rules, and cannot generalize to unseen architectures, or resort to zero-cost proxies which are not always accurate. In this paper, we propose GENNAPE, a Generalized Neural Architecture Performance Estimator, which is pretrained on open neural architecture benchmarks, and aims to generalize to completely unseen architectures through combined innovations in network representation, contrastive pretraining, and fuzzy clustering-based predictor ensemble. Specifically, GENNAPE represents a given neural network as a Computation Graph (CG) of atomic operations which can model an arbitrary architecture. It first learns a graph encoder via Contrastive Learning to encourage network separation by topological features, and then trains multiple predictor heads, which are soft-aggregated according to the fuzzy membership of a neural network. Experiments show that GENNAPE pretrained on NAS-Bench-101 can achieve superior transferability to 5 different public neural network benchmarks, including NAS-Bench-201, NAS-Bench-301, MobileNet and ResNet families under no or minimum fine-tuning. We further introduce 3 challenging newly labelled neural network benchmarks: HiAML, Inception and Two-Path, which can concentrate in narrow accuracy ranges. Extensive experiments show that GENNAPE can correctly discern high-performance architectures in these families. Finally, when paired with a search algorithm, GENNAPE can find architectures that improve accuracy while reducing FLOPs on three families.Comment: AAAI 2023 Oral Presentation; includes supplementary materials with more details on introduced benchmarks; 14 Pages, 6 Figures, 10 Table

    Recent Advances of Local Mechanisms in Computer Vision: A Survey and Outlook of Recent Work

    Full text link
    Inspired by the fact that human brains can emphasize discriminative parts of the input and suppress irrelevant ones, substantial local mechanisms have been designed to boost the development of computer vision. They can not only focus on target parts to learn discriminative local representations, but also process information selectively to improve the efficiency. In terms of application scenarios and paradigms, local mechanisms have different characteristics. In this survey, we provide a systematic review of local mechanisms for various computer vision tasks and approaches, including fine-grained visual recognition, person re-identification, few-/zero-shot learning, multi-modal learning, self-supervised learning, Vision Transformers, and so on. Categorization of local mechanisms in each field is summarized. Then, advantages and disadvantages for every category are analyzed deeply, leaving room for exploration. Finally, future research directions about local mechanisms have also been discussed that may benefit future works. To the best our knowledge, this is the first survey about local mechanisms on computer vision. We hope that this survey can shed light on future research in the computer vision field

    CAVL: Learning Contrastive and Adaptive Representations of Vision and Language

    Full text link
    Visual and linguistic pre-training aims to learn vision and language representations together, which can be transferred to visual-linguistic downstream tasks. However, there exists semantic confusion between language and vision during the pre-training stage. Moreover, current pre-trained models tend to take lots of computation resources for fine-tuning when transferred to downstream tasks. In this work, we present a simple but effective approach for learning Contrastive and Adaptive representations of Vision and Language, namely CAVL. Specifically, we introduce a pair-wise contrastive loss to learn alignments between the whole sentence and each image in the same batch during the pre-training process. At the fine-tuning stage, we introduce two lightweight adaptation networks to reduce model parameters and increase training speed for saving computation resources. We evaluate our CAVL on six main downstream tasks, including Visual Question Answering (VQA), Visual Commonsense Reasoning (VCR), Natural Language for Visual Reasoning (NLVR), Region-to-Phrase Grounding (RPG), Text-to-Image Retrieval (TIR), and Zero-shot Text-to-Image Retrieval (ZS-TIR). Compared to baselines, we achieve superior performance and reduce the fine-tuning time by a large margin (in particular, 76.17%). Extensive experiments and ablation studies demonstrate the efficiency of contrastive pre-training and adaptive fine-tuning proposed in our CAVL

    CLAMP: A Contrastive Language And Molecule Pre-training Network

    Full text link
    This paper highlights a shift in how to approach material generation. Instead of material-to-material, we propose a language-to-material generation architecture that utilizes millions of untapped data points. Using a web scraper to collect crystal text pairs from open-source research papers, a contrastive model can be trained using a convolutional graph neural network encoder and a language encoder. This would allow unsupervised zero-shot classification which can be trained by taking advantage of linguistic structure. Without any specific training data, an ~82\% accuracy was achieved and ~75\% accuracy for photocatalyst prediction with an extremely small dataset. This novel network could ideally be cross-applied to any reaction that can be described via text, opening completely new methods to think about 3D chemical framework generation. In the full experiment diffusion models would likely be incorporated to fully exploit the latent space.Comment: 3 pages, 1 figure, Presenting @ NeurIPS23 & Workshop - source @ https://github.com/neelr/clamp - dataset @ https://www.kaggle.com/datasets/programgeek01/cif-summary-dat
    corecore