240 research outputs found

    Survey on deep learning based computer vision for sonar imagery

    Get PDF
    Research on the automatic analysis of sonar images has focused on classical, i.e. non deep learning based, approaches for a long time. Over the past 15 years, however, the application of deep learning in this research field has constantly grown. This paper gives a broad overview of past and current research involving deep learning for feature extraction, classification, detection and segmentation of sidescan and synthetic aperture sonar imagery. Most research in this field has been directed towards the investigation of convolutional neural networks (CNN) for feature extraction and classification tasks, with the result that even small CNNs with up to four layers outperform conventional methods. The purpose of this work is twofold. On one hand, due to the quick development of deep learning it serves as an introduction for researchers, either just starting their work in this specific field or working on classical methods for the past years, and helps them to learn about the recent achievements. On the other hand, our main goal is to guide further research in this field by identifying main research gaps to bridge. We propose to leverage the research in this field by combining available data into an open source dataset as well as carrying out comparative studies on developed deep learning methods.Article number 10515711

    SI-GAT: A method based on improved Graph Attention Network for sonar image classification

    Full text link
    The existing sonar image classification methods based on deep learning are often analyzed in Euclidean space, only considering the local image features. For this reason, this paper presents a sonar classification method based on improved Graph Attention Network (GAT), namely SI-GAT, which is applicable to multiple types imaging sonar. This method quantifies the correlation relationship between nodes based on the joint calculation of color proximity and spatial proximity that represent the sonar characteristics in non-Euclidean space, then the KNN (K-Nearest Neighbor) algorithm is used to determine the neighborhood range and adjacency matrix in the graph attention mechanism, which are jointly considered with the attention coefficient matrix to construct the key part of the SI-GAT. This SI-GAT is superior to several CNN (Convolutional Neural Network) methods based on Euclidean space through validation of real data.Comment: 5 pages, 4 figure

    Self-Supervised Learning for Improved Synthetic Aperture Sonar Target Recognition

    Full text link
    This study explores the application of self-supervised learning (SSL) for improved target recognition in synthetic aperture sonar (SAS) imagery. The unique challenges of underwater environments make traditional computer vision techniques, which rely heavily on optical camera imagery, less effective. SAS, with its ability to generate high-resolution imagery, emerges as a preferred choice for underwater imaging. However, the voluminous high-resolution SAS data presents a significant challenge for labeling; a crucial step for training deep neural networks (DNNs). SSL, which enables models to learn features in data without the need for labels, is proposed as a potential solution to the data labeling challenge in SAS. The study evaluates the performance of two prominent SSL algorithms, MoCov2 and BYOL, against the well-regarded supervised learning model, ResNet18, for binary image classification tasks. The findings suggest that while both SSL models can outperform a fully supervised model with access to a small number of labels in a few-shot scenario, they do not exceed it when all the labels are used. The results underscore the potential of SSL as a viable alternative to traditional supervised learning, capable of maintaining task performance while reducing the time and costs associated with data labeling. The study also contributes to the growing body of evidence supporting the use of SSL in remote sensing and could stimulate further research in this area

    Marine Robots for Underwater Surveillance

    Get PDF
    Abstract Purpose of Review The paper reviews the role of marine robots, in particular unmanned vehicles, in underwater surveillance, i.e. the control and monitoring of an area of competence aimed at identifying potential threats in support of homeland defence, antiterrorism, force protection and Explosive Ordnance Disposal (EOD). Recent Findings The paper explores separately robotic missions for identification and classification of threats lying on the seabed (e.g. EOD) and anti-intrusion robotic systems. The current main scientific challenge is identified in terms of enhancing autonomy and team/swarm mission capabilities by improving interoperability among robotic vehicles and providing communication networking capabilities, a non-trivial task, giving the severe limitations in bandwidth and latency of acoustic underwater messaging. Summary The work is intended to be a critical guide to the recent prolific bibliography on the topic, providing pointers to the main recent advancements in the field, and to give also a set of references in terms of mission and stakeholders' requirements (port authorities, coastal guards, navies)

    Seabed classification using physics-based modeling and machine learning

    Full text link
    In this work model-based methods are employed along with machine learning techniques to classify sediments in oceanic environments based on the geoacoustic properties of a two-layer seabed. Two different scenarios are investigated. First, a simple low-frequency case is set up, where the acoustic field is modeled with normal modes. Four different hypotheses are made for seafloor sediment possibilities and these are explored using both various machine learning techniques and a simple matched-field approach. For most noise levels, the latter has an inferior performance to the machine learning methods. Second, the high-frequency model of the scattering from a rough, two-layer seafloor is considered. Again, four different sediment possibilities are classified with machine learning. For higher accuracy, 1D Convolutional Neural Networks (CNNs) are employed. In both cases we see that the machine learning methods, both in simple and more complex formulations, lead to effective sediment characterization. Our results assess the robustness to noise and model misspecification of different classifiers

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table
    • …
    corecore