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Research on the automatic analysis of sonar images has focused on classical, i.e. non deep learning based,
approaches for a long time. Over the past 15 years, however, the application of deep learning in this research
field has constantly grown. This paper gives a broad overview of past and current research involving deep
learning for feature extraction, classification, detection and segmentation of sidescan and synthetic aperture
sonar imagery. Most research in this field has been directed towards the investigation of convolutional neural
networks (CNN) for feature extraction and classification tasks, with the result that even small CNNs with up
to four layers outperform conventional methods.

The purpose of this work is twofold. On one hand, due to the quick development of deep learning it serves
as an introduction for researchers, either just starting their work in this specific field or working on classical
methods for the past years, and helps them to learn about the recent achievements. On the other hand, our
main goal is to guide further research in this field by identifying main research gaps to bridge. We propose to
leverage the research in this field by combining available data into an open source dataset as well as carrying
out comparative studies on developed deep learning methods.

1. Introduction

Sidescan sonar (SSS) and synthetic aperture sonar (SAS) systems are
among the most prominent sensors when investigating the sea floor.
Common applications are the search for unexploded ordnances (UXO),
wrecks or segmenting different bottom types. These sensors, which are
mounted on a towfish or autonomous underwater vehicle (AUV), emit
an acoustic ping and receive the backscattered signal. The recorded
time-signals are further processed, e.g. by stacking consecutive pings
on top of each other, in order to form an image. During sea floor
scanning missions, which can extend over several days, a large number
of images are captured. Manually inspecting the data is cumbersome
and time consuming, since objects of interest are very rare (e.g. for
the object detection task) or because large parts of the images need to
be annotated (e.g. for bottom type segmentation). Thus, an automatic
analysis of sonar imagery is crucial and has been researched exten-
sively for many years (Johnson and Deaett, 1994; Nelson and Tuovila,
1995; Langner et al., 2009). Typically, computer vision methods for
analyzing sonar images are combined under the term automatic target
recognition (ATR).

Since the success of AlexNet (Krizhevsky et al., 2012) in the 2012
ImageNet Large Scale Video Recognition Challenge (ILSVRC) convolu-
tional neural networks (CNN) have become state-of-the-art in computer
vision tasks. It took a few more years for CNNs to be applied to SSS and
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SAS images (see Fig. 1). Most recent, Vision Transformer (ViT) (Doso-
vitskiy et al., 2021) are more and more often applied in vision tasks,
which surpass CNNs on standard classification benchmarks. However,
they have not been applied to sonar imagery yet. In general the
application of deep learning methods to the sonar imagery domain is
several years behind the state-of-the-art as shown by selected methods
in Fig. 1. Their breakthrough started around 2016. Since then the
number of research publications with respect to deep learning applied
to SSS and SAS imagery for computer vision tasks has constantly
grown. In most cases the developed deep learning methods outperform
classical approaches which shows the transformative character of this
technology also for the sonar imagery domain. Researchers who have
worked on traditional ATR methods for the automatic analysis of sonar
images now need to adapt to this change of the state-of-the-art and get
accustomed to deep learning.

Due to the importance of deep learning as a tool for ATR, the
increased number of research papers and the quick development in
deep learning research, a survey on deep learning based computer
vision for sonar imagery is necessary. For this, we systematically review
the past and current research in this field and present the main findings.
With over 60 publications considered, our status quo review serves
researchers who are new to this field as well as sonar engineers who are
familiar with the conventional processing but not with deep learning as
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Fig. 1. Number of relevant publications per year for the considered computer vision tasks.
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Fig. 2. Examples of sonar images from different sensors. (a) A SSS image. (b) A SAS image'. (¢) A FLS image.

a starting point. The holistic overview and discussions help researchers
who are already working on deep learning solutions in the field of
SSS and SAS imagery to see the development over the past few years
as well as the current trends. Furthermore, by compressing the work
done so far, our main goal is to guide further research in this field
by revealing the current state-of-the-art as well as identifying main
research gaps to bridge. We focus especially on SSS and SAS imagery
and exclude work done with data from forward looking sonar (FLS)
since the type of images captured by this sensor differs from the other
two, see Fig. 2 where one example image from each sensor is displayed.
Nevertheless, it should be noted that deep learning applications have
also been investigated for FLS images, like Valdenegro-Toro (2016),
Fuchs et al. (2018), Jin et al. (2019) and Fan et al. (2021) to mention
a few research works.

From the example sonar images in Fig. 2 the difference compared
with natural RGB images becomes clear. As sonar images represent
acoustic intensities, features that utilize color information are useless.
Moreover, the resolution of sonar images is smaller compared to nat-
ural RGB images. High resolution SAS systems are able to achieve a
resolution of a few centimeters. Still, the computer vision methods
have to deal with less details compared to conventional images. Due
to the large domain gap between sonar and natural RGB images a
simple application of state-of-the-art deep learning methods will fail.
In addition, speckle noise, multipath returns, sea surface reflections

! Image captured with a SeaCat Vision Mk2 SAS, provided by ATLAS
ELEKTRONIK GmbH.
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Fig. 3. Typical conventional ATR processing chain. In a first step the sonar image
undergoes some pre-processing. From this image ROIs are detected. From the ROIs the
highlight and shadow regions are segmented and features are calculated. Based on the
extracted features the ROIs are classified into given classes, e.g. target or clutter.

and other effects related to the underwater environment cause the
interpretation of sonar images to be challenging.

Fig. 3 shows the typical conventional ATR processing chain for SSS
and SAS images (Fei et al., 2015) together with the main information
captured at each step. From this we derive detection, segmentation,
feature extraction and classification as the computer vision subtasks
that are considered in this survey. In the conventional ATR process-
ing chain, the detection step serves mainly for extracting regions of
interest (ROI). Afterwards, within the segmentation subtask, the ob-
ject highlight and the acoustic shadow are segmented. In the feature
extraction step, hand-crafted features are extracted from the ROI as
well as the segmentation results, e.g. size of the acoustic shadow. A
classifier, e.g. a support vector machine (SVM), is finally used to predict
a class based on these features for each ROL In our survey we use the
ATR processing chain as a guideline and investigate what deep learning
methods have been applied in the individual subtasks (except the pre-
processing). Note however, that we will consider a different ordering
of subtasks compared with the ATR processing chain in the structure
of our survey, as we move from the less complex to the most complex
task. In the deep learning context feature extraction is most of the time
directly included in the classification step. Furthermore, a deep learning
detector simultaneously predicts the location, size and class of an object
and thus includes the classification. Deep learning based segmentation
adds even more complexity because the objects are detected on a pixel
level. Thus, we consider the deep learning approaches to the ATR
subtasks in the order: feature extraction, classification, detection and
segmentation.

We searched for relevant publications using Clarivates Web of Sci-
ence with a combination of the keywords: deep learning, side scan
sonar, sidescan sonar, synthetic aperture sonar, automatic target recog-
nition, feature extraction, classification, detection, segmentation. Our
search results in 5 papers regarding feature extraction, 35 for classifi-
cation, 12 for detection and 10 regarding segmentation. An overview
on the deep learning methods applied in the individual ATR subtasks
is depicted by the flowchart in Fig. 4. The number associated with
an arrows towards a method indicates the number of times it was
applied. We marked the most popular methods in each subtask with
a bold arrow. Different architectures of one deep learning method are
summarized under the name of the method, e.g. ResNet covers ResNet-
18, ResNet-50 and other types of this architecture. For a faster look
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up on the abbreviations in Fig. 4 we refer to the list of abbreviations
in Appendix A of the appendix. We investigate the contributions of
the individual papers in terms of the designed or applied deep learn-
ing methods, their main findings and their relation to other works.
From this we derive current research gaps with respect to the three
viewpoints:

* Method: What are the most promising methods?

» Completeness: Are there state-of-the-art deep learning methods for
computer vision that have not been applied to the sonar imagery
domain yet?

* Data: Deep leaning has profited from large publicly available
datasets. How is the situation for SSS and SAS images?

We are aware of the existing review by Neupane and Seok (2020),
who considered deep learning approaches for ATR in FLS, SSS, SAS and
passive sonar systems. However, in our survey we focus particularly on
work done using SSS and SAS data which is only lightly covered in their
review. This focus on the two sensors as well as the explicit separation
by ATR subtasks helps the reader to easily get the information he or
she needs. Moreover, the publications regarding SSS and SAS images
considered in Neupane and Seok (2020) are mainly about generating
synthetic images and are not directly ATR related. This becomes evi-
dent when looking at the intersection between the considered papers,
as only three publications considered in our work are listed in Neupane
and Seok (2020). Furthermore, due to the quick development in the
field of deep learning, our survey gives an update on the current state-
of-the-art in ATR for SSS and SAS images. Although there is only one
year between the two surveys, 20% of the papers covering this range
of topics are published in 2021. Domingos et al. presented a survey on
deep learning methods for underwater shoreline surveillance (Domin-
gos et al., 2022). Their main focus lies on methods for processing data
from passive sonar systems. Approaches for SSS and SAS data are only
lightly covered. Another review on literature regarding ATR for sonar
imagery was done by Hozyn (2021). He focuses on the classification
and detection mines in SSS and SAS images. Traditional as well as
deep learning methods are reviewed. In contrast to his work, we focus
not only on methods designed for mine classification and detection
but consider more applications like the detection of wrecks or the
segmentation of different sea bottom types. Another survey (Teng and
Zhao, 2020) covers literature relating to underwater target recognition
based on optical sensors. To the best of our knowledge, no survey
provides a holistic view on deep learning based computer vision for
SSS and SAS imagery.

It should be noted that CNNs, besides being successfully applied
to various computer vision tasks, still some general challenges, like
overfitting, slow convergence, getting stuck in local minima or poor
performance on small datasets exist. Since a detailed discussion on
CNNss is beyond the scope of this work we refer the reader to the current
literature such as Alzubaidi et al. (2021) or Chai et al. (2021).

This paper is organized as follows: We divide the main part of our
survey into the aforementioned computer vision tasks and consider
feature extraction in Section 2, classification in Section 3, detection in
Section 4 and segmentation in Section 5. After analyzing the existing
research for the individual ATR subtasks, we derive current challenges
in deep learning based computer vision for sonar imagery in Section 6.
We close our paper with a summary in Section 7.

2. Feature extraction
2.1. Subtask explanation

In order to classify ROIs in the conventional ATR processing chain,
features need to be calculated in order to train a classifier. This subtask

of feature extraction is depicted in Fig. 5. Before the rise of deep learn-
ing and especially CNNs, those features were based on hand-crafted
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Fig. 5. Scheme of the feature extraction subtask. Based on mathematically formulated rules a feature vector is extracted from the ROL

Table 1
Publications on deep learning for feature extraction from sonar imagery.
Paper Task Method
Isaacs (2014) Representation learning for MLO AE
Zhu et al. (2017) Feature extraction for object recognition AlexNet
McKay et al. (2017) Mine recognition VGG-16, VGG-19, VGG-f, AlexNet
Rutledge et al. (2018) Archaeological site detection ResNet-50
Divyabarathi et al. (2021) Shipwreck, plain wreck ResNet-50

engineering. Since in SSS and SAS images the acoustical shadow con-
tains important information, features are typically based on the pixel
intensities as well as the segmented highlight and shadow areas. Some
examples of hand-crafted features are: object area, object mean inten-
sity, difference between object and background mean intensity (Perry
and Guan, 2004). From literature, several deep learnings methods used
to extract feature from SSS and SAS images are investigated. We present
in the following section how these methods improve the performance
of an ATR processing chain.

2.2. Deep learning applications

Table 1 lists papers which investigate deep learning for the feature
extraction step. The column Task summarizes the main objective of
each paper while Method lists the used deep learning methods. Because
abbreviations are used in this and the following tables, a list of abbre-
viations is given in the appendix for a faster look up. We sorted the
papers in the table by their year of publication.
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Fig. 6. Scheme of the classification subtask. A ROI needs to be assigned to a specific class, typically based on extracted features.

In four of the five papers listed in Table 1 standard CNN models
like AlexNet, VGG or ResNet were implemented. The fifth paper used
an auto-encoder (AE) to generate features from a sonar image. All
papers covered a different task, ranging from mine recognition to
archaeological site detection.

One of the first applications of deep learning to SSS or SAS data was
the usage of CNNs for the calculation of abstract features (Zhu et al.,
2017; McKay et al., 2017). Prior to this, Isaacs used latent Dirichlet
allocations (LDA) and AE with a single hidden layer to extract features
of objects in SAS images (Isaacs, 2014). The purpose of LDA and AE
was to learn a representation of the snippet containing the object in an
unsupervised manner. The AE was trained on 600 snippets from a SAS
image database from the NATO Centre for Maritime Research and Ex-
perimentation (CMRE) MUSCLE AUV system. However, in this work the
quality of the learned representations was only assessed empirically.
Whether these representations are useful for further classification is still
open for investigation.

Multiple works have shown that using a pre-trained CNN for feature
extraction in combination with an SVM for classification improves
the classification performance compared to the usage of simpler fea-
tures (Zhu et al., 2017; McKay et al., 2017; Rutledge et al., 2018).
In Zhu et al. (2017) a pre-trained AlexNet was used for this purpose.
The features were extracted without fine-tuning from the last fully con-
nected layer. For comparison, the two conventional feature extraction
methods local binary patterns and histogram of oriented gradients were
selected. The SVM trained with features from AlexNet outperformed
the ones trained with the conventional features. In McKay et al. (2017)
different CNNs were analyzed for the task of extracting features in an
ATR processing chain. The authors considered VGG-16, VGG-19, VGG-f
and AlexNet and compared them to a scale invariant feature transform
bag-of-words model and a sparse reconstruction-based classifier. An
SVM was used to classify the sonar images based on the extracted
features. Again, the main result underlined that the CNNs serve as a
better feature extractor, with the deeper VGG-19 and AlexNet being
the best methods. In their work the authors also fine-tuned some layers
of VGG-f, which consists only of the first three convolutional layers and
a fully convolutional layer for the classification. With only 20 training
samples per class they found this CNN to perform worse than the clas-
sical feature extractors combined with an SVM when classifying blocks,
cones, spheres and cylinders. A slightly different application was con-
sidered in Rutledge et al. (2018) where ROIs were ranked in order to
generate an input sequence for a path planning module of an AUV.
The ranking was done using a ranking SVM which was trained with
hand-crafted features as well as features extracted from a ResNet-50
pre-trained on the ImageNet dataset. Again, the features from the
deep CNN showed a better performance and generalization ability.
Recently, features from a ResNet-50 were used in combination with
an ensemble of four different classifiers, namely logistic regression,
random forest, naive Bayes and SVM (Divyabarathi et al., 2021). The
authors showed that the ensemble improves the performance compared
to the individual classifiers. However, no analysis of the classification
performance of the ResNet-50 was carried out.

All available work showed that features extracted from CNNs are
better suited for further processing with an SVM than conventional or
hand-crafted features. No publication has investigated the combination
of deep learning and conventional features. Nevertheless, we will show
in the next section that some hand-crafted features have been included
in a CNN for classification with a positive effect on the performance.
Features can also be extracted by an AE but their usability for the ATR
process is still unclear. However, nowadays in general computer vision
task the feature extraction step is not carried out explicitly anymore.
Instead CNNs have shown to be powerful enough to classify images
without the need of a complementary algorithm like an SVM. With only
a few papers regarding the feature extraction subtask being published,
this also indicates that a separate feature extraction is not part of a deep
learning based ATR processing chain today.

3. Classification
3.1. Subtask explanation

A primary objective of an ATR system is to tell an operator what
can be seen in a sonar image. For this, ROIs are assigned to predefined
classes based on features extracted from the image. One purpose is
for example to distinguish between an UXO and a ROI generated
due to clutter. The classification subtask is shown in Fig. 6. Based
on features either gained hand-crafted or learned by a CNN, classi-
cal machine-learning methods like an SVM can be used to classify
ROIs. The following section will investigate the recent advances in
the classification subtask using deep learning methods like multilayer
perceptrons (MLP) or CNNs, which are in this case not exclusively used
for feature extraction.

3.2. Deep learning applications

Publications which tackle the classification problem with a deep
learning approach are listed in Table 2. The column Classes summarizes
the different objects that are intended to be classified in the individual
papers. As before, the deep learning methods used are listed under
Method. The term CNN in this column refers to a custom network
designed for that particular work. When the specific architecture of a
network is not stated (e.g. VGG instead of VGG-16) it was not clear
from the paper which architecture was used.

The papers listed in Table 2 are grouped by the classes considered
for classification. From this grouping it is seen that most works (11 out
of the 35 considered publications) deal with the binary classification
between a target and clutter. Note that the classification of target and
clutter can also be seen as a refinement of the detection since clutter
may be considered as background. Since the detection step leading
to the ROIs that are classified in these 11 publications is not based
on deep learning, we assigned them to the classification subtask. Two
further common use cases are the differentiation between a mine-like
object (MLO) and a false alarm as well as the classification of different
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Qin et al. (2021)

Sand wave, mud, reef

Table 2

Publications on deep learning for classification of sonar imagery.
Paper Classes Method
Chen and Sandy ridges, sand wave, rocky, rocky AE, CNN
Summers (2016) sand, flat sand
Berthold et al. Coarse, mixed, sand, fine sediment GoogLeNet
(2017)
Luo et al. (2019) Sand wave, mud, reef CNN

AlexNet, LeNet, DenseNet-52,
DenseNet-100, DenseNet-151,
ResNet-3-2, ResNet-3-3,

ResNet-4-2, VGG-13, VGG-16

Ye et al. (2018)
Wang et al. (2019)

Ship-&plane wreck vs. other
Shipwreck, plain wreck, stone, tire,
shoal, sand ripple

VGG-11, ResNet-18
AW-CNN, CNN, DBN

Huo et al. (2020) Shipwreck, plane wreck, corpse, mine, CNN, VGG
background

Xu et al. (2020) Shipwreck, plane wreck, sand, stone CNN

Li et al. (2021) Shipwreck, plane wreck, others AE, ResNet-34

Nayak et al. Archaeological sites vs. background CNN

(2021)

Cheng et al. Shipwreck, plane wreck, see floor VGG19

(2022)

Karjalainen et al. Rock vs. cylinder CNN

(2019)

Ochal et al.
(2020)

18 objects®

PN, Relation Network, Soft
k-means PN, CPN, CNN,
ResNet-18, ResNet-50

Williams and
Dugelay (2016)
Williams (2017)
Williams (2018b)
Williams (2018a)
Gerg and Williams
(2018)

Galusha et al.
(2019)

d’Alés de Corbet
et al. (2019)
Williams et al.
(2019)
Berthomier et al.
(2020)

Williams (2021)
Gerg and Monga
(2022)

Target vs. clutter
Target vs. clutter
Target vs. clutter
Target vs. clutter
Target vs. clutter
Target vs. clutter
Target vs. clutter
Target vs. clutter

Target vs. clutter

Target vs. clutter
Target vs. clutter

DBM

CNN

CNN

CNN

CNN, VGG
CNN

CNN

CNN, VGG-16

CNN

CNN
CNN, DensNet-121, ResNet-18

Williams (2019) UXO vs. Non-UXO CNN

Dzieciuch et al. MLO vs. background CNN

(2017)

Chapple et al. MLO, NMLO, FAO, seabed InceptionNet

(2017)

Gebhardt et al. MLO vs. Non-MLO CNN

(2017)

Phung et al. MLO, NMLO, FAO CNN, AlexNet, VGG-16, VGG-19,

(2019) ResNet-50, Inception-v3,
GoogLeNet

Bouzerdoum et al. MLO, NMLO, FAO CNN, VGG

(2019)

Quidu et al. Mines MLP

(2005)

Williams (2016) Mines CNN

McKay et al. Mines VGG-16, VGG-19, VGG-f, AlexNet

(2017)

Zhu et al. (2018) Mines CNN

Warakagoda and Mines AlexNet, VGG-16, DenseNet-161,

Midtgaard (2018)

Inception-ResNet-v2,
NasNet-large, CNN

aThis notation refers to 3 residual blocks with 2 residual connections.
POnly the classes anchor, cube, plane, boar and pyramid are explicitly mentioned in the paper.
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types of mines (five publications each). Seven publications considered
ship and plane wrecks beside other classes. Additional information
about the datasets used in the papers is summarized in Table A.1 in the
appendix. Nearly 50% of the investigated research papers implemented
a custom CNN architecture. The second most used architecture is VGG
which was considered in 10 out of the 35 works.

Because it is not clear that a method which performs well on one
type of object (e.g. shipwrecks) will also perform well on another type
(e.g. mines) and whether results from the former apply to the latter,
the following discussion is grouped by the class of objects as given in
Table 2. By discussing and comparing the individual papers we will
derive common findings as well as research gaps.

Chen and Summers, Berthold et al. Luo et al. and Qin et al. used
CNNs for the classification of different sediment types (Chen and Sum-
mers, 2016; Berthold et al., 2017; Luo et al., 2019; Qin et al., 2021). In
an early work from 2016, Chen and Summers showed that pre-training
of an AE improves the classification performance of the encoder CNN
after fine-tuning. Less than 100 labeled samples per class in the fine-
tuning step were sufficient to achieve a classification accuracy of up to
88.2%. In addition, they showed that a generative adversarial network
(GAN) can generate realistic images of different seafloor types. Berthold
et al. used GoogLeNet to classify the four types coarse sediment, mixed
sediment, sand and fine sediment (Berthold et al., 2017). The network
was trained from scratch using patches from a sidescan mosaic image.
It showed a classification accuracy of 83% for the class sand but failed
to classify the fine sediment correctly. Luo et al. compared a shallow
CNN based on LeNet-5 with a deeper CNN based on AlexNet and
found that the former performed better when dealing with a small
dataset (<250 samples per class) (Luo et al., 2019). For the class
sand wave it achieved an accuracy of 93.43%. The work of Qin et al.
(2021) extended their previous work (Luo et al., 2019) by considering
pre-training on grayscale CIFAR-10 images and augmentation of the
dataset using a GAN which generates synthetic SSS snippets. They
analyzed a large number of different CNNs for the classification task
(see Table 2). Deeper networks especially benefit from the pre-training
with DenseNet-151 and ResNet-4-2 having the lowest error rate. Note
that the notation ResNet-4-2 here means four residual blocks with two
residual connections. The augmentation using a GAN was only applied
to some subset of the data but showed a slight improvement. Because
different datasets and metrics were used in the four papers, a direct
comparison between the results is difficult. Nevertheless, the benefit of
using a pre-training dataset was also observed in many other computer
vision problems (Valverde et al., 2021; Mensink et al., 2021). Identify-
ing different seabed types is also a classical segmentation problem in
the underwater domain which is further covered in Section 5.

Researchers from the Harbin Engineering University, China focused
their work on classifying shipwrecks, plane wrecks and other objects
like stones (Ye et al.,, 2018; Wang et al., 2019; Xu et al., 2020; Li
et al.,, 2021). In Ye et al. (2018) transfer learning from ImageNet
to SSS images was analyzed using a VGG-11 and a ResNet-18. The
authors found that training the whole network from scratch as well
as fine-tuning the whole network results in overfitting. Fine-tuning
of the network’s last layer led to a model with good performance.
Deep belief networks (DBN) and a method called adaptive weights
convolutional neural network (AW-CNN) were investigated in Wang
et al. (2019). AW-CNN uses the weights from a DBN to initialize the
CNN which results in a better performance compared to a CNN trained
from scratch. Xu et al. combined the classification output of a CNN
and an SVM which was trained with features from the CNN (Xu et al.,
2020). This incorporation of the SVM led to an increased classification
accuracy. The authors also augmented their dataset with synthetic
images generated from a Wasserstein GAN. Augmenting the dataset in
this way increased the performance even further. However, no analysis
of the image quality or diversity was made. A zero-shot classification
approach based on style transfer was developed in Li et al. (2021).
In zero-shot learning not a single real sonar image is directly used
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for the training of a CNN. Using an AE architecture, the style of SSS
images was transferred to natural RGB images of objects similar to the
considered classes (e.g. ships for the class shipwrecks). A ResNet-34
was trained on these synthetic images and tested on real sidescan
sonar data, achieving a mean accuracy of 75%. Huo et al. analyzed
transfer learning of CNNs for classifying SSS images of shipwrecks,
plane wrecks, corpses, mines and background samples (Huo et al.,
2020). They found that pre-training a VGG-19 on ImageNet and fine-
tune it on the sonar images performs better than using an SVM with
hand-crafted features or training a CNN with two convolutional layers
from scratch. In Nayak et al. (2021) additional hand-crafted features
were incorporated into a CNN with three convolutional layers in order
to improve the classification of sidescan sonar snippets into the classes
archaeological sites (e.g. shipwrecks) and background. An additional
improvement was made by pre-processing all snippets using an edge
detector and feeding these images to the CNN. Comparability of the
individual results and derivation of a best approach is hard, just as
with feature extraction, since the datasets used differ in many dimen-
sions, e.g. number of images as shown in Table A.1, pre-processing or
number of classes. Nevertheless, one common finding so far is that
pre-training or initialization of a CNN using DBN is to be preferred
over the training from scratch. Recently, Cheng et al. improved the
classification performance of a VGG19 by incorporating mulit-domain
pre-training and attention modules to the network (Cheng et al., 2022).
Synthetic aperture radar (SAR) images, which have a small domain gap
to sonar images, were used to pre-train the first convolutional layers
for the VGG19. Grayscaled optical images of ships, airplanes and the
sea surface were used to pre-train the fully connected layers. This type
of transfer-learning combines the benefits from the low-level similarity
between SAR and SSS as well as from the high-level similarity between
the three classes in sonar and optical images. In addition, a combination
of channel and spatial attention was used to help the network to focus
on important parts of the input images.

One paper considered a CNN for the classification of sonar images
into the class rock or cylinder. Karjalainen et al. trained a CycleGAN
and showed that a CNN trained on the synthetic images performs as
good as a CNN trained on real data (Karjalainen et al., 2019). Enlarging
the training dataset with synthetic images generated by a GAN is an
approach which is more and more often adopted in the sonar imagery
domain Reed et al. (2019), Steiniger et al. (2020), Jegorova et al.
(2020), Xu et al. (2020) and Qin et al. (2021).

In Ochal et al. (2020) few-shot learning was investigated for the
classification of SSS images and compared to transfer learning. More
precisely, Prototypical Network (PN), Relation Network, Soft k-means
PN and Consistent Prototypical Network (CPN) were used as few-
shot learning methods while a custom CNN, ResNet-18 and ResNet-50
were used for transfer-learning. On a dataset consisting of simulated
SSS images from 18 different objects the few-shot learning method
performed slightly better than the pure CNNs. Contrary to the findings
of other works (Ye et al., 2018; Huo et al., 2020) training both ResNets
from scratch rather than using the pre-trained weights obtained using
the ImageNet database performed better. However, the number of
simulated images per class was not mentioned in Ochal et al. (2020)
making a fair comparison between the different works more difficult.

A lot of work in the field of classification of sonar imagery has
been done by the NATO CMRE (Williams and Dugelay, 2016; Williams,
2017, 2018b,a; Gerg and Williams, 2018; d’Alés de Corbet et al.,
2019; Williams et al., 2019; Berthomier et al., 2020; Williams, 2021,
2019, 2016). Most of the work deals with the differentiation between
target and clutter snippets from a SAS, where the class target typically
includes mine-like and other man-made objects. In their first work,
Williams et al. trained a deep Boltzmann machine (DBM) in a multi-
view scenario where images of one object from different perspectives
are available (Williams and Dugelay, 2016). Using multiple views
increased the performance of the DBM. The benefit was greater if
the images were fused prior to the training rather than fusing the
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predictions of the individual views. Combining multiple views of an
object was further investigated in d’Ales de Corbet et al. (2019). Here
two different CNN architectures were considered. One averaged over
the predictions of the CNN applied to each view individually. The
second one had a separate branch for each view which were then
concatenated prior to a fully connected layer. The authors showed
that the second approach gives a slight improvement over averaging
of the individual predictions. In Williams (2017) different custom
CNN architectures with the number of convolutional layers ranging
from two to five were studied and compared to a relevant vector
machine (RVM). The results showed that all CNNs outperform the
RVM and an ensemble of CNNs led to an additional improvement.
Their best performing single model was a CNN with four convolutional
layers. Some publications deal with additional input information and
how it can be used to improve the performance of a CNN (Williams,
2018b; Gerg and Williams, 2018; Williams et al., 2019). The phase
information of the complex SAS data rather than the amplitude was
successfully used in Williams (2018b) to classify target and clutter
snippets. However, the CNN architectures are not comparable with the
ones from Williams (2017) and thus no direct statement about which
type of input image is better suited can be made. Nevertheless, in
most recent publications only the images containing the amplitude are
used, indicating that this representation severs as the better input for
CNNs. The usages of additional input information for the classification
of SAS snippets was further analyzed by Gerg and Williams (2018). The
amplitude, phase and 2D power spectral density (PSD) were considered
individually and combined as separate inputs to a CNN. Phase-only and
PSD-only performed worse but the PSD in addition to the amplitude
gave a slight boost over amplitude-only. Additionally, a VGG pre-
trained on ImageNet and fine-tuned on SAS amplitude images achieved
the best performance. In Williams et al. (2019) different representations
of SAS snippets were considered for the classification. This includes
translation and horizontal flipping at test time as well as the phase
image and frequency spectrum as two additional branches in the CNN.
All three branches were concatenated prior to the fully connected layer.
The augmentation at test-time and the additional input information
improved the classification performance. Furthermore, an ensemble
of four small CNNs which used multiple representations achieved the
same performance as a VGG-16 pre-trained on ImageNet and fine-tuned
on the amplitude images. Target-concept transfer and sensor transfer
were studied in Williams (2018a). In the first case a CNN was pre-
trained to classify between mines and clutter and then transferred
to classify between UXO and clutter which now contained mines as
well. For sensor transfer the CNN was pre-trained on data from one
SAS system and transferred to data from another SAS which operated
at a different frequency band. On both transfer learning tasks, the
performance after fine-tuning was better if the amplitude information
was used rather than the phase information. Berthomier et al. added
auxiliary information like image quality or target shape to be predicted
by a CNN (Berthomier et al., 2020). This resulted in a slight drop in
classification performance considering target vs. clutter but at the same
time led to a model which outputs more information about an image.
Several different CNN architectures were recently studied in Williams
(2021). In total eight CNNs with the number of convolutional layers
ranging from four to twenty were designed and compared. One finding
from this work was that CNNs with smaller kernel sizes but larger
pooling factors tended to perform better than CNNs with larger kernels
and smaller pooling factors. Their best performing CNN had twelve
convolutional layers with mostly 4 x 4 and 5 x 5 kernels. In conjunction
with previous work (Williams, 2017; Williams et al., 2019) they found
that test-time augmentations using translation and horizontal flipping
as well as an ensemble of the eight CNNs improved the performance.
Other researchers also investigated CNNs for the classification of SAS
snippets (Galusha et al., 2019). They considered a dual-frequency SAS
and designed a CNN with two input channels, one for each frequency.
Data augmentation using horizontal flipping and a slight rotation of +
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/- 10 degrees during training improved the performance of this CNN.
The authors provided no analysis regarding the benefit of using two
frequencies. But since the previously discussed publications have shown
the benefit of multiple representations and because the two images
for different frequencies provide the network with more information
an improvement over the single-frequency approach is expected. Gerg
and Monga showed that incorporating domain knowledge about SAS
images and the detection step leading to the ROIs into the neural
network improves the classification performance (Gerg and Monga,
2022). Their first domain knowledge prior stated that SAS images
contain speckle noise. A U-Net was trained in order to learn a denoising
of the sonar image prior to the feature extraction with a DenseNet-121.
Additionally, the overall network did not only predict the class of the
object but also its location inside the ROI. This was based on the second
domain knowledge prior that the detector extracts the snippet with the
object centered in the middle. Thus, augmenting the dataset through
translation and learning this offset directly led to a translation invariant
CNN. Their architecture achieved a better classification performance
than a DenseNet-121 without priors, a ResNet-18 and the CNN de-
scribed by Galusha et al. (2019) but with only a single input. So far,
research work on the classification between target and clutter snippets
has shown that multiple views from an object as well as different
representations are beneficial for the use of CNNs. An optimal network
architecture is not found, as one work suggested four convolutional
layers while a more recent work proposed twelve layers. However,
these custom CNNs were not compared to state-of-the-art networks
like EfficientNet or ViT. Comparisons between a fine-tuned VGG and
a custom CNN showed a similar performance for the two networks.

In Williams (2019) the previous work on target-concept transfer
learning (Williams, 2018a) was expanded and applied to the classi-
fication between UXO and non-UXO. Four CNNs with four to twelve
convolutional layers each were trained on two datasets captured by
different SAS systems. The first training dataset contained nearly 3000
target snippets while the second dataset only contained 65 UXO images.
Similar to Williams (2018a) pre-training on the first dataset and fine-
tuning on the second led to a better performance than training only on
the second dataset.

Another prominent use case of deep learning is the classification
of sonar snippets into the classes mine-like object (MLO), non-mine-
like object (NMLO) and false alarm object (FAO) (Dzieciuch et al.,
2017; Chapple et al., 2017; Gebhardt et al., 2017; Phung et al., 2019;
Bouzerdoum et al., 2019). Dzieciuch et al. used a CNN with only
one convolutional layer and analyzed the effect of the number of
training epochs and batch size on the classification accuracy (Dzieciuch
et al., 2017). Using 250 training images they achieved an accuracy of
99% when classifying between MLO and background snippets which
were considered as FAO in this case. As is commonly known, training
converged faster using a larger batch size. In Chapple et al. (2017) an
InceptionNet pre-trained on ImageNet was fine-tuned using sonar im-
ages to improve the performance of an ATR system. Similar to Williams
(2021) Gebhardt et al. performed a study on different CNN architecture
with a varying number of convolutional layers ranging from one to
nine (Gebhardt et al., 2017). More than five convolutional layers led
to a slight improvement in accuracy at the cost of a longer inference
time. Their best model was a seven layer CNN and all CNNs with more
than one convolutional layer outperformed an SVM. A study about
deep pre-trained CNNs was carried out in Phung et al. (2019). In their
analysis VGG-19 performed best, while ResNet-50 only achieved an
accuracy of 55.76%. A second finding from their comparison was that
in most cases replacing the last layer of a deep pre-trained CNN with
an SVM performs equal or better than fine-tuning the whole CNN. An
explanation for this was not given in the publication but the small
training dataset of only 199 samples give rise to the argumentation
that more data is required for successful fine-tuning. The authors also
proposed a hierarchical Gaussian process (HGP) classifier which used
the features from the fully connected layer of a CNN as an input. This
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Fig. 7. Scheme of the detection subtask. The detector localizes the object by predicting a bounding box and simultaneously classifies the containing object.

combination of CNN and HGP reached a higher classification accuracy
than the VGG-19 at the cost of higher computational complexity. In
Bouzerdoum et al. (2019) transfer learning and data augmentation
were investigated. For transfer learning they considered a VGG network
and found that, similar to Phung et al. (2019), replacing the last fully
connected layer with an SVM performs better than fine-tuning the
whole network. The augmentation methods found to be useful are
horizontal flipping, scaling and extracting the object and placing it onto
a different background snippet. Furthermore, a shallow CNN consisting
of two convolutional layers was designed, which outperformed the
combination of VGG and SVM (which in turn had outperformed the
fine-tuned VGG). This finding seems contrary to some other work
like Gerg and Williams (2018) and Williams et al. (2019) were the
VGG showed the best performance. One reason for these two different
findings is most likely the dataset size. Bouzerdoum et al. (2019) used
176 MLO, 40 NMLO and 196 FAO snippets, while in Gerg and Williams
(2018) and Williams et al. (2019) 2912 target and 29,280 clutter
snippets were used for training.

The first work dealing with a deep learning based approach for
sonar image analysis was done by Quidu et al. (2005). They used an
MLP to classify different types of mines based on hand-crafted features
extracted from the objects shadow region. More than ten years later,
David Williams was the first to apply CNNs to sonar imagery for the
task of classifying mines in a binary manner (Williams, 2016). In his
work he showed that, similar to his findings in Williams and Dugelay
(2016), the CNN outperforms a RVM based on hand-crafted features.
As already mentioned in Section 2 the authors of McKay et al. (2017)
were not able to fine-tune a VGG network without employing an SVM
on the classification task due the lack of data. In Zhu et al. (2018)
the authors used an AlexNet-like CNN for the classification of different
types of mines. Due to a lack of data they pre-trained the CNN with
images simulated by a ray tracer and showed that this increases the
classification accuracy. The fine-tuned CNN as well as the one trained
from scratch outperformed an SVM. Transfer learning in the context
of mine classification was also investigated by Warakagoda and Midt-
gaard (2018). Different ways of fine-tuning AlexNet and VGG-16 were
analyzed by freezing specific parts of the networks. They found that
fine-tuning the whole network performs better than fine-tuning only
some layers at the input or output of the network. Furthermore, the
authors compared several deep CNNs pre-trained on ImageNet and fine-
tuned on their SAS image data. Networks with a better performance on
ImageNet also performed better on the sonar data with NasNet-large
being the best model on both datasets.

This overview has shown that deep learning methods have led to
improvements on several different sonar image classification tasks over

the past years. Starting from MLPs which used hand-crafted features,
the design of shallow custom CNNs as well as the transfer of deeper
networks to the sonar domain have emerged as main research fields.
One obstacle when applying deep learning to sonar image classification
is the lack of (publicly) available data. This results in rather small net-
works, the development of specific augmentation methods (e.g. using
GANSs or ray tracing), few- or zero-shot approaches and special im-
provements which utilize the properties of the sonar domain. Multiple
views of an object, the combination of different data types (e.g. the
phase information) and domain knowledge improves the classification
of sonar images. In deep learning the quality and amount of data used
for training and testing has a high impact on the reported performance
of a method. Nevertheless, all investigated papers used a different
dataset (see also Table A.1 in the appendix). To make further progress
in applying deep learning to sonar imagery, a fair comparison in terms
of performance, training and inference speed and stability between
developed methods is necessary. For this, we suggest to create at least
one publicly available benchmark dataset.

4. Detection
4.1. Subtask explanation

In the conventional ATR processing chain for SSS and SAS images
the detection serves mainly as a method for locating possible ROIs. The
objective of this approach is to favor a high recall over a high precision
as false alarms are filtered out by a subsequent classification step (see
Fig. 3). In classical ATR processing chains the detection step is typically
implemented as a basic template matching procedure (Fei et al., 2015).
Considering detection from a deep learning perspective, it combines the
localization, classification and estimation of the extent of an object into
one step. This subtask is displayed in Fig. 7. The algorithms directly
output the location of an object in the form of a bounding box enclosing
it. Here a high recall and precision should be achieved. Deep learning
detection methods that are applied and especially designed for object
detection in sonar images are considered in the following section.

4.2. Deep learning applications

The research papers dealing with the detection of objects in SSS
or SAS images are listed in Table 3. In this table the column Object
specifies the type of object that is considered for detection in the
respective work while Method, as before, summarizes the deep learning
approaches used. Most works considered the detection of MLOs (5 out
of the 12 publications). In 50% of the publications a version of YOLO
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Table 3
Publications on deep learning for detection in sonar imagery.
Paper Object Method
Xu et al. (2019) Shipwrecks YOLOv1, Faster R-CNN

Jiang et al. (2020)
corpse

Yu et al. (2021) Shipwrecks, container

Shipwrecks, plane wrecks,

Faster R-CNN, YOLOv1, SSD

YOLOV5, Transformer

Einsidler et al. Anomaly, rock YOLOv2

(2018)

Feldens et al. Rock RetinaNet

(2019)

Feldens (2020) Rock RetinaNet

Denos et al. MLO AE, CNN

(2017)

McKay et al. Mines VGG-16, VGG-19, VGG-f, AlexNet

(2017)

Berthomier et al. MLO CNN

(2019)

Le et al. (2020) MLO Gabor CNN, R-CNN, Fast R-CNN,
Faster R-CNN, Tiny YOLOV3,
YOLOv3, SSD300

Topple and MLO, NMLO MiNet

Fawcett (2021)

Steiniger et al. Target YOLOv2, YOLOv3, CNN

(2021a)

was used for detection. The second most utilized architecture is Faster
R-CNN which was considered in three works. The individual papers are
grouped by common objects that should be detected.

A typical object to be detected in sonar images is a shipwreck.
In Xu et al. (2019) YOLOv1l and Faster R-CNN were compared for
detecting shipwrecks. Due to the lack of own data the authors took SSS,
SAS, multibeam echosounder and optical images from the internet as
training and test data. A GAN-based approach was used to further aug-
ment the dataset. With the additional data the performance of YOLOv1
improved, although the generated images show artifacts which make
them easy to distinguish from real sonar images. The Faster R-CNN was
not trained with the augmented dataset but achieved a better perfor-
mance than YOLOv1 when trained on the baseline dataset. An active
learning approach for the detection of shipwrecks and other objects
was discussed in Jiang et al. (2020). The three methods uncertainty
sampling, uncertainty and diversity sampling and local information
selection were compared. Faster R-CNN was used as a detector. With
both uncertainty sampling methods 1500 samples were selected to
achieve the same performance as when 3000 samples were selected
randomly. This shows a higher efficiency and reduces the labeling
effort. The framework was extended to SSD and YOLOv1 with Faster
R-CNN and SSD performing slightly better than YOLOv1. Very recently,
Yu et al. were the first to investigate the self-attention mechanism in
the context of object detection in sonar images (Yu et al., 2021). Adding
a multi-head self-attention module to YOLOv5s led to an increase
in performance with nearly no computational overhead. The authors
also found that pre-training is preferable over training from scratch,
however the used pre-training dataset is not specified.

The first group to apply a standard deep learning detector to SSS
images was Einsidler et al. (2018). They showed that YOLOv2 can
already be trained with less than 150 images to detect rocks and other
objects on the seafloor. However, no performance evaluation in terms
of a calculated metric was provided. Feldens et al. also considered the
detection of rocks (Feldens et al., 2019). In their work they trained a
RetinaNet and showed that a better performance is achieved if smaller
patches from the SSS image are used. Specifically, patches of size 25 m?
and 225 m? with a resolution of 0.25 m per pixel were considered
prior to upscaling to the input size of the RetinaNet. Further analyses
showed that a rock needs to encompass at least 3 x 3 pixels in the image
to be detected reliably. In Feldens (2020) this work was extended by
using a single-stage residual network for super-resolution. Increasing
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the resolution of the sonar image through super-resolution resulted in
an improvement of the detection especially for small rocks. Besides the
classical application of ATR, findings like these also serves for studies
on the maritime ecosystem or for geoengineering purposes.

In Denos et al. (2017) an AE was used in a first stage to learn
features from synthetic SAS snippets containing a simulated MLO. The
reconstruction error of the AE was then used to generate a heatmap
of a larger, real SAS image and to extract snippets of background
without an object. A VGG-like CNN was trained on the simulated target
and real background snippets. However, this method led to a large
number of false alarms since other objects were also filtered by the
AE and were thus not contained in the background class. The method
from McKay et al. (2017), which was already discussed in Section 2, can
be extended to perform detection. Here the combination of AlexNet as
a feature extractor and an SVM was used to calculate a score for small
patches of a large sonar image indicating the presence of an object.
The resulting heatmap was thresholded to obtain the final detections.
This approach was further analyzed by Berthomier et al. (2019). A
CNN with four convolutional layers, which had been trained for the
classification between MLO and clutter, was used instead of the AlexNet
and SVM combination. For the detection the input size of the CNN was
increased in order to receive a large SAS image. This method performed
well for a rather flat seafloor but still needs to be improved for more
complex seafloor types, e.g. the presence of sand ripples. In Le et al.
(2020) a Gabor filter based neural network was designed and compared
to a large range of deep learning detectors. The architecture of the
Gabor CNN was similar to YOLOv3 and performed detection at multiple
scales. By using Gabor filters instead of classical convolution kernels
the detection performance was improved compared to YOLOv3. How-
ever, this improvement came at cost of a longer inference time. Other
detectors considered in the paper (see Table 3) performed worse. The
Gabor CNN was also compared to the previously mentioned approach
from McKay et al. and showed a higher detection rate as well as a
lower false alarm rate while running at a higher speed. A so-called
MiNet was developed for on-board detection of MLOs on an AUV in
Topple and Fawcett (2021). MiNet is a one stage detector similar to
YOLO with a smaller backbone. The authors suggested an incremental
training procedure. First the network was trained on synthetic images.
In a second step, synthetic images of objects were combined with real
background samples. Finally, real sonar images were used for training.
The network fulfilled the on-board requirements in terms of memory
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consumption (9.9 MB) and processing power (0.0122 GFLOPS) and was
able to detect objects in a sonar image within minutes. Unfortunately,
no quantitative analysis or comparisons with other methods were done
in the publication.

A comparison between YOLOv2, YOLOv3 and a small CNN used
for detection similar to Berthomier et al. (2019) was carried out in
Steiniger et al. (2021a). YOLOv2 and YOLOv3 were pre-trained on the
MS COCO dataset, while the CNN was trained from scratch. In the
experiments YOLOv3 showed the best performance leading the authors
to the conclusion that fine-tuning a standard deep learning detector is
preferable over training a custom network from scratch.

Reviewing the work on the detection subtask has shown that basic
CNNs applied to a whole sonar image as well as standard deep learning
detection methods like YOLO have been investigated in the litera-
ture. Custom methods involve the usage of Gabor filters which have
proven to be suitable for sonar images as well as custom backbones
which are smaller compared to standard models. Both observations are
a consequence of sonar images having fewer details compared with
natural RGB images, and that only a limited amount of training data
is available. However, recently developed methods like DetectoRS or
DETR have not yet been considered for SSS and SAS images. Finally,
as for the classification subtask, the lack of a common dataset makes
it hard to answer which detection algorithm works best on SSS or SAS
images. In addition, no consistent metric is reported in the investigated
papers. Future results should always be reported in a standard metric
like average precision to allow an easy and fair comparison.

5. Segmentation
5.1. Subtask explanation

The segmentation of a sonar image results in a masked image
where specific regions in the image are assigned a certain label. In
the conventional ATR processing chain segmentation is used to extract
the highlight and shadow areas caused by an object in order to further
extract features from these areas, e.g. the size or shape. In the context of
computer vision the segmentation is used for a larger variety of goals.
Three types of segmentation are distinguished: semantic segmentation,
instance segmentation and panoptic segmentation. An example of each
type of segmentation is shown in Fig. 8. Semantic segmentation assigns
a class label to each pixel, e.g. to identify different seafloor types in a
sonar image. In contrast to this, instance segmentation has the goal of
assigning an object ID and a class label to all pixels belonging to one
object. Pixels which do not belong to an object would not be masked in
instance segmentation. Panoptic segmentation combines both semantic
and instance segmentation and assigns a semantic label to each pixel
as well as an object ID to all objects. Research on investigating deep
learning methods to solve the segmentation task on SSS and SAS images
is reviewed in the following section.

5.2. Deep learning applications

Table 4 lists the papers that we identified using the keywords and
that deal with the task of sonar image segmentation. The column Task
specifies what should be segmented for that particular work and is
considered for the grouping of the investigated papers. Method again
summarizes the deep learning methods that are used.

Common segmentation tasks are the segmentation of sand waves
(3 of the 10 research works), segmentation of highlight, shadow and
background regions (2 of 10) and segmentation of prominent linear
structures (2 of 10). In four of the ten research works a fully convo-
lutional network (FCN) was used. Besides this, DeepLab, U-Net and
SegNet were used in two works each. All of the identified research
papers considered only semantic segmentation for sonar images. For
instance and panoptic segmentation objects need to be present in
the images which are then assigned an object ID. However, only the

11

Engineering Applications of Artificial Intelligence 114 (2022) 105157

work from Chen and Summers (2017) considered the segmentation of
objects. Segmenting objects can be seen as an extension of the detection
step, since in addition to a bounding box, a mask must also be predicted
for each object. The delay between the development of new deep
learning methods or tasks and their application to the sonar imagery
domain (see Fig. 1) can thus also been observed here. We will now
investigate the segmentation approaches of the individual tasks in more
detail.

Zheng et al. considered the task of differentiating between water
column and seafloor as a segmentation problem and applied
DeepLabV3+ to solve it (Zheng et al., 2021). They also proposed a pre-
processing module which combined the original image, a horizontally
flipped version and the mean of these two into three channels. This pre-
processing helped the segmentation network to learn the symmetrical
behavior of the sea bottom line on the port and starboard side and
improved the mean intersection over union (IoU) slightly. Furthermore,
based on a first coarse segmentation the image was cropped and used
for a fine segmentation. The overall method achieved a mean pixel
error when comparing the extracted sea bottom line with the ground
truth of 1.1 pixel. Note that the authors only provided the mean pixel
error and not an average of the absolute error which can be misleading
since large positive and negative errors are evened out. Nevertheless,
the comparison with a conventional method showed a qualitatively
better result for the deep learning approach. It should be noted that
other deep learning approaches for determining the sea bottom line
exist which process the one dimensional time signals of a sonar (Yan
et al., 2020, 2021; Qin et al., 2021). Because this is not considered
as sonar imagery the papers are not listed in Table 4. Promising
approaches for this particular use case are based on a 1D U-Net (Yan
et al., 2021; Qin et al., 2021).

Wu et al. as well as Wang et al. segmented prominent lines in sonar
images (Wu et al., 2019; Wang et al., 2020). Wu et al. developed a
method which they call efficient convolutional network (ECNet) and
which is based on an encoder—decoder architecture (Wu et al., 2019).
The final output was the average of the output from the first three
encoders and the last decoder. To deal with the imbalance between
highlight and background pixels the authors implemented a weighted
loss function. Their method was compared to a U-Net, SegNet and
LinkNet and showed a better performance with a mean IoU of 66.18%.
Wang et al. used a simpler approach based on a VGG-16 transformed
into a FCN (Wang et al., 2020). Skip connections and batch normaliza-
tion were added to the architecture to deal with exploding gradients
during training. To solve the problems provoked by the imbalanced
dataset the authors used a weighted loss function too. The FCN out-
performed traditional methods like fuzzy c-means and the Canny edge
detector, reaching a mean IoU of 83.05%. However, one needs to be
careful when comparing this result with the work of Wu et al. because
Wang et al. augmented a base dataset of 50 sonar images to obtain 2000
images and split this augmented dataset into training and test set. This
causes similar images to be contained in both sets.

In Song et al. (2017) the authors used a FCN to segment sonar
images into the typical regions highlight, shadow and background. A
Markov random field (MRF) was applied to post-process the segmented
image. The combination of FCN and MRF showed a better performance
than both methods individually. In Song et al. (2021) the authors
extended their work by considering self-cascaded CNNs for the segmen-
tation task. The self-cascaded CNN was compared to a normal CNN of
the same size and the conventional methods fuzzy c-means and MRF.
As in Song et al. (2017) the segmentation result was post-processed by
a MRF. The performance of the self-cascaded CNN was the best in their
comparison. However, the FCN from Song et al. (2017) was not taken
into account. When comparing the results of the two papers one needs
to be careful since the dataset as well as the reported metric (accuracy
in Song et al. (2017) and mean IoU in Song et al. (2021)) are different.
Nevertheless, the qualitative segmentation results shown in the papers
indicate a good performance for both methods but the self-cascaded
CNN was trained with less data.
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(a)

Fig. 8. Different types of segmentation of a sidescan sonar image. (a) Semantic segmentation. Each pixel is assigned a semantic label, e.g. flat, wave, object. (b) Instance
segmentation. All pixel belonging to an object are assigned a unique ID. (c) Panoptic segmentation. Each pixel is assigned a semantic label and pixels belonging to an object are

assigned a ID.

Table 4
Publications on deep learning for segmentation of sonar imagery.
Paper Task Method
Zheng et al. (2021) Water column DeepLabV3+
Wu et al. (2019) Lines ECNet, U-Net, SegNet, LinkNet
Wang et al. (2020) Lines FCN
Song et al. (2017) Highlight, shadow, background FCN

Song et al. (2021)

Highlight, shadow, background

self-cascaded CNN

Yu et al. (2019) Sand waves DeepLab

Li et al. (2019) Sand waves ENet, SegNet
Nian et al. (2021) Sand waves ELM, MobileNetV1
Rahnemoonfar and Dobbs (2019) Seagrass, pothole U-Net, FCN

Chen and Summers (2017) Target FCN

Another application of segmentation is the determination of dif-
ferent seafloor structures or sediment types. Yu et al. used DeepLab
in order to segment sand waves from the remaining seafloor (Yu
et al., 2019). They improved the performance by augmenting the
dataset and increasing the image resolution using a CNN for super-
resolution. Adding a MRF in a post-processing step again showed a
slight improvement. In Li et al. (2019) the same authors compared
ENet and SegNet for the segmentation of sand waves. For ENet a
MRF was added for post-processing purposes. In their comparison
ENet was faster than SegNet and showed a better performance. Again
the datasets used for training and testing were different in Yu et al.
(2019) and Li et al. (2019) which needs to be mentioned when com-
paring the performance of ENet or SegNet with the method of Yu
et al. Nevertheless, the large difference in mean IoU between ENet
with 0.90 and the extended DeepLab with 0.59 is most likely not
only dataset related. Segmentation of sand waves was also considered
by Nian et al. (2021). Here the authors used an extreme learning
machine (ELM) to classify sub-sequences of the individual pings of
SSS data into sand wave or no sand wave. The predicted label was
then mapped to the sonar image at the location of the considered sub-
sequence to form the segmentation result. Their method was compared
to MobileNetV1 which classified not the sub-sequences but patches into
the two categories. Because the ELM only deals with one dimensional
data the network was smaller and thus faster at test time. ELM-based
segmentation had a slightly higher performance in terms of accuracy

12

and F1-score compared to MobileNetV1. Rahnemoonfar and Dobbs seg-
mented potholes in a seagrass bed (Rahnemoonfar and Dobbs, 2019).
They developed a U-Net like architecture with dense blocks on the en-
coder side and so-called inception-deconvolutions on the decoder side.
Inception-deconvolutions are based on transposed convolutional layers
with rectangular kernels as suggested by the InceptionNet architecture.
Their model was outperforming an FCN on the segmentation task and
used less parameters.

A slightly different approach of segmenting a sonar image was
considered in Chen and Summers (2017). The authors employed a fully
convolutional ladder network, which simultaneously segmented the
image, reconstructed it from an internal representation and classified it.
Using the two additional tasks, data which is not labeled for segmen-
tation but for classification can improve the training of the network.
The method was only evaluated qualitatively but generalized well on
the test images shown in the work.

Although different types of segmentation exist, all research on
segmenting SSS or SAS images has focused solely on semantic segmen-
tation. The considered deep learning segmentation methods outper-
formed simple conventional baselines like fuzzy c-means. Comparisons
with a stronger baselines, e.g. snake based approaches, are necessary
in order to assess the potential of deep learning methods for the
segmentation of sonar images. Finally, as for the classification subtask,
the lack of a common dataset makes it hard to compare the results
between different papers and to give an answer to the question which
algorithm is the best to segment a sonar image.
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6. Research directions

Based on the abstraction of all 62 papers considered here, we
will derive further research directions from three different viewpoints:
method, completeness, data. The viewpoint method recaptures for each
subtask the most promising deep learning methods which are treated as
state-of-the-art. They need be considered by researchers starting their
work in the field of SSS and SAS image processing. In addition to this,
completeness shows current gaps between state-of-the-art methods in
more common computer vision applications and sonar imagery. Poten-
tial further research directions and promising methods are derived from
that. Finally, data lists relevant concerns as well as research directions
with respect to the datasets used for ATR in SSS and SAS images.

6.1. Methods

Despite the lack of a consistent test dataset, there are still some
findings regarding an optimal deep learning method which are sup-
ported by multiple papers. Suggestions for which deep learning method
to use in the individual subtasks based on the previous discussions are
summarized in Fig. 9. Note however, that a final decision on which
single method is best suited for the respective ATR subtask cannot be
deduced due to the lack of comparability of the individual publications.
A broad comparison on a benchmark dataset is necessary in order to
close this research gap.

For the feature extraction subtask CNNs have shown to provide
better features for a subsequent classification than hand-crafted en-
gineering. However, since CNNs also outperform conventional classi-
fication algorithms like SVM the feature extraction task has lost its
relevance and is mostly included directly in the classification. Neverthe-
less, hand-crafted features have shown good performance for more than
20 years (Dobeck et al., 1997). An investigation into what extent a CNN
learns features similarly to those methods may give both insight to the
CNN and the opportunity to combine beneficial hand-crafted features
into a CNN.

When considering classification, the methods can be divided into
three groups depending on the amount of available training data. Less
than 200 images are not sufficient to fine-tune a VGG network or
to train a CNN from scratch. However, replacing the fully connected
layers with an SVM should lead to good results. Fine-tuning a VGG
architecture or training a shallow CNN with up to 4 convolutional
layers is a good choice when having a dataset of medium size. If more
data is available larger networks like DenseNet can be fine-tuned.

Only few comparisons were made between different deep learning
detection algorithms in the considered research papers. Faster R-CNN
seems to perform better than YOLOv1 but the updated version YOLOv3
outperforms the former. A very promising approach are Gabor CNNs
which are very suited for SSS and SAS images. In general, fine-tuning
a pre-trained deep learning detector leads to better results than those
obtained when training a custom CNN from scratch and applying it for
detection. For semantic segmentation a post-processing using MRF has
shown to lead to better results in every paper where it was applied.
The typical deep learning methods which are applied for this subtask
are FCN or encoder—decoder architectures.

6.2. Completeness

Looking at the state-of-the-art on the standard computer vision
benchmark ImageNet self-attention based models are currently at the
top. However, such methods, e.g. VisionTransformers (Dosovitskiy
et al.,, 2021), SWIN Transformers (Liu et al., 2021) or very recently
CoAtNet (Dai et al., 2021), have not yet been applied to the sonar
domain. Transformers generally show their full potential when a very
large dataset is available. Whether they can successfully be trained
with a limited amount of available SSS or SAS images needs to be
investigated. The most recent network architecture that is considered
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in one of the consulted research papers is NasNet which was published
in 2018. Since then, more architectures, e.g. ResNeXt or EfficientNet,
have been proposed and show better performance on ImageNet than
NasNet. Transfer-learning of larger models has proven to be beneficial
when only a medium sized dataset is available. Thus, a study on
transfer-learning of modern CNN architectures and a comparison to a
custom CNN has to be considered in one of the next steps. Research
on augmenting and generating synthetic sonar images needs to be
continued to ensure that larger models can be trained using limited
data.

As with the classification subtask transformers have currently been
applied for detection with promising results. The only paper which
considered an attention mechanism for sonar imagery are Yu et al.
(2021) and Cheng et al. (2022). Other recently proposed deep learning
detectors with attention like DETR (Carion et al., 2020) or without
attention like CenterNet2 (Zhou et al., 2021) or DetectoRS (Qiao et al.,
2021) need be considered for detecting objects in sonar images. In all
research papers regarding detection that are considered in this work
a comparison with a conventional method, e.g. template matching, is
missing. Without this comparison it is not proven that deep learning
methods perform better than conventional methods for the detection
of objects in SSS and SAS images. Both research gaps, the lack of
investigation of most recent deep learning detectors as well as the
comparison with conventional methods, can be closed by carrying out a
study about deep learning detection algorithms for SSS and SAS images
which considers both types of methods.

As shown in Section 5 only semantic segmentation methods are
investigated for SSS and SAS images so far. Very recently the task of
panoptic segmentation was proposed, which combines semantic and
instance segmentation. For sonar images this type of segmentation is
relevant because different seafloor types as well as objects lying on the
seafloor would be segmented at the same time. This combines multiple
different tasks that are relevant in the sonar domain and leads to a more
complete analysis of a sonar image. Thus, we propose the investigation
of panoptic segmentation for SSS and SAS images. Current state-of-the-
art method for panoptic segmentation on MS COCO is Mask2Former,
which again uses attention and should also be considered for sonar
images.

Two evolving fields in deep learning which are close related are
the uncertainty estimation and the calibration of computer vision mod-
els (Shen et al., 2021; Rajaraman et al., 2022). In critical applications
like the classification between MLO and NMLO knowledge about the
uncertainty of the prediction is essential. Model calibration is especially
necessary if the used dataset is unbalanced, which is often the case for
sonar image datasets. So far, to the best of our knowledge, no work has
been done on applying such methods in the field of sonar imagery. This
leaves uncertainty estimation and model calibration as another impor-
tant research direction. For uncertainty estimation, Abbaszadeh Shahri
et al. (2022) recently proposed a method that uses an ensemble of
networks created by dropping connections between neurons. Closely
related to uncertainty estimation is sensitivity analysis, where the
influence of the input on the output is analyzed in order to get more
inside to a model. In computer vision applications, those analyses are
typically carried out through adversarial examples (Linardatos et al.,
2020). Getting more insides to a neural network and removing its black
box character is part of research on explainable artificial intelligence.
Because the automatic processing of sonar images on an AUV is one
main application of the research (Li et al., 2019; Song et al., 2021),
an explanation of the network’s predictions is essential. Some of the
investigated papers consider such explanations, e.g. by interpreting the
learned feature maps of a CNN (Williams, 2021) or by determining
which part of the input image is relevant for the prediction (Williams,
2017). Nevertheless, more work needs to be done in order to better
explain why a network makes certain decisions. We refer the reader
to Linardatos et al. (2020) and Samek et al. (2019) for a broad overview
of methods for explainable artificial intelligence.
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Fig. 9. Suggested deep learning methods for the individual subtasks in the ATR processing chain.

Training of CNNs involves tuning of several hyperparameter and can
get stuck in local optima. To overcome these problems, metaheuristic
algorithms, like genetic programming or grey wolf optimizer, have been
designed. A combination of CNNs and metaheuristic algorithms have
recently been applied to medical computer vision problems (Oyelade
and Ezugwu, 2022). Such hybrid models have not been considered for
sonar imagery yet but should be investigated for a further improvement
in this field.

6.3. Data

Our survey discovered that the most challenging problem when
applying deep learning to any of the ATR subtasks is the lack of a public
dataset for training and testing of the methods. The military nature of
the data, e.g., the classification of mines, is one reason why the data
has not been made public. From the scientific perspective, this lack
of a common benchmark dataset is especially relevant since it makes
the comparison of different papers nearly impossible. To leverage the
progress of deep learning for sonar imagery a common baseline dataset
has to be created. Since a large sonar image dataset is typically not
existing at only one institute or company an open source solution gives
all researchers the possibility to contribute to this baseline dataset and
thereby to enlarge it.

Additionally, the dataset needs to cover different challenging sce-
narios for the different subtasks. For classification the survey shows a
broad range of applications. A dataset for classification thus needs to
consider many different classes (e.g. seafloor types and mine types).
In addition, a major challenge when classifying sonar images is the
variable nature of highlight and shadow appearance when the angle
from which the object is viewed changes. A cylinder from the front
may look more like a stone than a typical cylinder. The detection is also
expected to depend on the type of seafloor, since more complex surfaces
such as sand ripples or rock fields generate a large number of false
alarms. A dataset for this subtask needs to capture different objects as
well as different seafloors. As previously stated panoptic segmentation
is a promising application for segmenting sonar images. Not much work
has been done so far on labeling seafloor and objects on a pixel level.
Thus, an additional challenge here is to annotate the data. Especially
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the speckle noise in sonar images will be challenging for generating
high quality annotations.

Besides comparability, an open source dataset helps researchers who
only have a small dataset available. Current ways to deal with limited
data are to enlarge the dataset by standard augmentation (Galusha
et al., 2019; Bouzerdoum et al., 2019) or using GANs to generate
synthetic data (Jegorova et al., 2020; Steiniger et al., 2021b). Few-
shot learning seems also to be suited for this case but the only paper
applying it to SSS images deals with synthetic data. Improving ways
to generate synthetic data and few- or even zero-shot learning are
research directions which should be followed in order to improve
current algorithms.

Finally, fine-tuning standard deep learning models on sonar data has
shown to be beneficial. However, no analysis has yet been carried out as
to which pre-training dataset is most suited for dealing with sonar im-
ages. Other works on transfer-learning in computer vision have shown
that the selection of the pre-training dataset can have a large impact
on the final performance (Mensink et al., 2021). Especially the large
domain gap between the common pre-training datasets like ImageNet
or MS COCO on the one hand and SSS or SAS data on the other hand
motivates further research toward the most suited pre-training dataset.
The recent results from Cheng et al. that pre-training on SAR image
leads to an improvement over the standard usage of ImageNet further
indicates that a deeper analysis of the used pre-training dataset can lead
to better networks.

7. Conclusion

This survey has reviewed research papers which consider deep
learning approaches for the typical ATR subtask feature extraction,
classification, detection and segmentation. We have shown that not
only in standard computer vision but also in the sonar domain deep
learning is a quickly developing field. CNNs are outperforming classical
methods when it comes to feature extraction and classification. For
detection and segmentation, a comparison with state-of-the-art conven-
tional methods is still missing. In terms of applying state-of-the-art deep
learning methods to the sonar domain, the research community is a
few years behind. Transformers are currently the main research topic
in computer vision but have only been considered in one out of the 62
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research works. Because of the large domain gap between sonar images
and natural RGB images as well as the limited amount of training data,
ways to utilize the full potential of state-of-the-art deep learning model
for sonar images need to be investigated. Multiple works have used
GANSs to generate synthetic images which is a promising approach to
deal with limitations due to a small dataset. Other contributions that
should be highlighted are the usage of multiple representation for sonar
image classification, Gabor-CNNs for detection in sonar images and
incorporating attention modules to classification and detection models.

Another crucial finding is the lack of a publicly available benchmark
dataset which harms the comparability of developed methods. Such a
sonar image dataset would give a boost to the development of better
deep learning methods for the classification, detection and segmenta-
tion of SSS or SAS images. Finally, we propose the following five main
research directions:

+ Studying state-of-the-art deep learning detection algorithms ap-
plied to sonar images.

+ Applying panoptic segmentation of SSS and SAS images.

» Employing different pre-training datasets when fine-tuning deep
learning models.

» Building an open source SSS and SAS benchmark dataset.

» Improve the generation of synthetic sonar images.

Table A.1

Information about the datasets used in the classification tasks.
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Paper Sonar Number of training samples Number of test samples
Chen and Summers (2017) SAS <500°? 1000
Berthold et al. (2017) SSS ? ?

Luo et al. (2019) SSS 545 144
Qin et al. (2021) SSS 900 300
Ye et al. (2018) SSS 235 100
Wang et al. (2019) SSS 1.545* 515*
Huo et al. (2020) SSS 833 257
Xu et al. (2020) SSS 291

Li et al. (2021) SSS 365 274
Nayak et al. (2021) SSS 7.148*

Cheng et al. (2022) SSS 725 341
Karjalainen et al. (2019) SSS 207 ?
Ochal et al. (2020) SSS (simulated) ? ?
Williams and Dugelay (2016) SAS 6.950 204
Williams (2017) SAS 764 764
Williams (2018b) SAS ? 196.252°
Williams (2018a) SAS ? ?

Gerg and Williams (2018) SAS 32.192 24.726
Galusha et al. (2019) SAS ? ?
d’Alés de Corbet et al. (2019) SAS 52 104
Williams et al. (2019) SAS 32.192 24.133
Berthomier et al. (2020) SAS 655.438¢ 24.725
Williams (2021) SAS 655.426 24.133
Gerg and Monga (2022) SAS 27.748 21181
Williams (2019) SAS 46.003 15398
Dzieciuch et al. (2017) SSS 250 250
Chapple et al. (2017) SSS, SAS ? ?
Gebhardt et al. (2017) SSS 4.326 5.138
Phung et al. (2019) SSS 199 198
Bouzerdoum et al. (2019) SSS, SAS 330 82
Quidu et al. (2005) SAS ? 4
Williams (2016) SAS 659 659
McKay et al. (2017) SAS 80 40
Zhu et al. (2018) SAS 123 41
Warakagoda and Midtgaard (2018) SAS 4.380 420

aThe number of unlabeled training data is not stated.
Y927 target and 195325 clutter samples.
€2924 target and 652514 clutter samples.
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Appendix A. List of abbreviations

AE Auto-encoder

ATR Automatic target recognition

AUV Autonomous underwater vehicle
AW-CNN Adaptive weights convolutional neural network
CMRE Centre for Maritime Research and Experimentation
CNN Convolutional neural network

CPN Consistent prototypical network
DBN Deep belief network

DBM Deep Boltzmann machine

ECNet Efficient convolutional network
ELM Extreme learning machine

FAO False alarm object

FCN Fully convolutional network

FLOP Floating-point operations per second
FLS Forward looking sonar

GAN Generative adversarial network
HGP Hierarchical Gaussian process
ILSVRC ImageNet Large Scale Video Recognition Challenge
IoU Intersection over union

LDA Latent Dirichlet allocations

MLO Mine-like object

MLP Multi layer perceptron

MRF Markov random field

NMLO Non-mine-like object

PN Prototypical network

PSD Power spectral density

ROI Region of interest

RVM Relevant vector machine

SAR Synthetic aperture radar

SAS Synthetic aperture sonar

SSS Sidescan sonar

SVM Support vector machine

UXO Unexploded ordnance

ViT Vision transformer

Appendix B. Datasets used for classification

Table A.1 lists the number of sonar images that are used to train
the classification methods in the respective works. Some authors have
not specified this number which is indicated by a question mark. If
only the number of training samples is stated, no information about the
train/test split was given in the paper. In some cases only the amount
of training data after augmentation is given, indicated by a star in the
table. Note that the datasets might not be balanced, e.g., the dataset
in Williams and Dugelay (2016) contains 2526 target and 4424 clutter
snippets.
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