1,326 research outputs found

    Competent Program Evolution, Doctoral Dissertation, December 2006

    Get PDF
    Heuristic optimization methods are adaptive when they sample problem solutions based on knowledge of the search space gathered from past sampling. Recently, competent evolutionary optimization methods have been developed that adapt via probabilistic modeling of the search space. However, their effectiveness requires the existence of a compact problem decomposition in terms of prespecified solution parameters. How can we use these techniques to effectively and reliably solve program learning problems, given that program spaces will rarely have compact decompositions? One method is to manually build a problem-specific representation that is more tractable than the general space. But can this process be automated? My thesis is that the properties of programs and program spaces can be leveraged as inductive bias to reduce the burden of manual representation-building, leading to competent program evolution. The central contributions of this dissertation are a synthesis of the requirements for competent program evolution, and the design of a procedure, meta-optimizing semantic evolutionary search (MOSES), that meets these requirements. In support of my thesis, experimental results are provided to analyze and verify the effectiveness of MOSES, demonstrating scalability and real-world applicability

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)

    Full text link
    CLIP embeddings have demonstrated remarkable performance across a wide range of computer vision tasks. However, these high-dimensional, dense vector representations are not easily interpretable, restricting their usefulness in downstream applications that require transparency. In this work, we empirically show that CLIP's latent space is highly structured, and consequently that CLIP representations can be decomposed into their underlying semantic components. We leverage this understanding to propose a novel method, Sparse Linear Concept Embeddings (SpLiCE), for transforming CLIP representations into sparse linear combinations of human-interpretable concepts. Distinct from previous work, SpLiCE does not require concept labels and can be applied post hoc. Through extensive experimentation with multiple real-world datasets, we validate that the representations output by SpLiCE can explain and even replace traditional dense CLIP representations, maintaining equivalent downstream performance while significantly improving their interpretability. We also demonstrate several use cases of SpLiCE representations including detecting spurious correlations, model editing, and quantifying semantic shifts in datasets.Comment: 17 pages, 8 figures, Code is provided at https://github.com/AI4LIFE-GROUP/SpLiC

    my Human Brain Project (mHBP)

    Get PDF
    How can we make an agent that thinks like us humans? An agent that can have proprioception, intrinsic motivation, identify deception, use small amounts of energy, transfer knowledge between tasks and evolve? This is the problem that this thesis is focusing on. Being able to create a piece of software that can perform tasks like a human being, is a goal that, if achieved, will allow us to extend our own capabilities to a very high level, and have more tasks performed in a predictable fashion. This is one of the motivations for this thesis. To address this problem, we have proposed a modular architecture for Reinforcement Learning computation and developed an implementation to have this architecture exercised. This software, that we call mHBP, is created in Python using Webots as an environment for the agent, and Neo4J, a graph database, as memory. mHBP takes the sensory data or other inputs, and produces, based on the body parts / tools that the agent has available, an output consisting of actions to perform. This thesis involves experimental design with several iterations, exploring a theoretical approach to RL based on graph databases. We conclude, with our work in this thesis, that it is possible to represent episodic data in a graph, and is also possible to interconnect Webots, Python and Neo4J to support a stable architecture for Reinforcement Learning. In this work we also find a way to search for policies using the Neo4J querying language: Cypher. Another key conclusion of this work is that state representation needs to have further research to find a state definition that enables policy search to produce more useful policies. The article “REINFORCEMENT LEARNING: A LITERATURE REVIEW (2020)” at Research Gate with doi 10.13140/RG.2.2.30323.76327 is an outcome of this thesis.Como podemos criar um agente que pense como nós humanos? Um agente que tenha propriocepção, motivação intrínseca, seja capaz de identificar ilusão, usar pequenas quantidades de energia, transferir conhecimento entre tarefas e evoluir? Este é o problema em que se foca esta tese. Ser capaz de criar uma peça de software que desempenhe tarefas como um ser humano é um objectivo que, se conseguido, nos permitirá estender as nossas capacidades a um nível muito alto, e conseguir realizar mais tarefas de uma forma previsível. Esta é uma das motivações desta tese. Para endereçar este problema, propomos uma arquitectura modular para computação de aprendizagem por reforço e desenvolvemos uma implementação para exercitar esta arquitetura. Este software, ao qual chamamos mHBP, foi criado em Python usando o Webots como um ambiente para o agente, e o Neo4J, uma base de dados de grafos, como memória. O mHBP recebe dados sensoriais ou outros inputs, e produz, baseado nas partes do corpo / ferramentas que o agente tem disponíveis, um output que consiste em ações a desempenhar. Uma boa parte desta tese envolve desenho experimental com diversas iterações, explorando uma abordagem teórica assente em bases de dados de grafos. Concluímos, com o trabalho nesta tese, que é possível representar episódios em um grafo, e que é, também, possível interligar o Webots, com o Python e o Neo4J para suportar uma arquitetura estável para a aprendizagem por reforço. Neste trabalho, também, encontramos uma forma de procurar políticas usando a linguagem de pesquisa do Neo4J: Cypher. Outra conclusão chave deste trabalho é que a representação de estados necessita de mais investigação para encontrar uma definição de estado que permita à pesquisa de políticas produzir políticas que sejam mais úteis. O artigo “REINFORCEMENT LEARNING: A LITERATURE REVIEW (2020)” no Research Gate com o doi 10.13140/RG.2.2.30323.76327 é um sub-produto desta tese
    corecore