5,630 research outputs found

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features

    Full text link
    Riemannian geometry has been successfully used in many brain-computer interface (BCI) classification problems and demonstrated superior performance. In this paper, for the first time, it is applied to BCI regression problems, an important category of BCI applications. More specifically, we propose a new feature extraction approach for Electroencephalogram (EEG) based BCI regression problems: a spatial filter is first used to increase the signal quality of the EEG trials and also to reduce the dimensionality of the covariance matrices, and then Riemannian tangent space features are extracted. We validate the performance of the proposed approach in reaction time estimation from EEG signals measured in a large-scale sustained-attention psychomotor vigilance task, and show that compared with the traditional powerband features, the tangent space features can reduce the root mean square estimation error by 4.30-8.30%, and increase the estimation correlation coefficient by 6.59-11.13%.Comment: arXiv admin note: text overlap with arXiv:1702.0291

    Identifying changes in EEG information transfer during drowsy driving by transfer entropy

    Full text link
    © 2015 Huang, Pal, Chuang and Lin. Drowsy driving is a major cause of automobile accidents. Previous studies used neuroimaging based approaches such as analysis of electroencephalogram (EEG) activities to understand the brain dynamics of different cortical regions during drowsy driving. However, the coupling between brain regions responding to this vigilance change is still unclear. To have a comprehensive understanding of neural mechanisms underlying drowsy driving, in this study we use transfer entropy, a model-free measure of effective connectivity based on information theory. We investigate the pattern of information transfer between brain regions when the vigilance level, which is derived from the driving performance, changes from alertness to drowsiness. Results show that the couplings between pairs of frontal, central, and parietal areas increased at the intermediate level of vigilance, which suggests that an enhancement of the cortico-cortical interaction is necessary to maintain the task performance and prevent behavioral lapses. Additionally, the occipital-related connectivity magnitudes monotonically decreases as the vigilance level declines, which further supports the cortical gating of sensory stimuli during drowsiness. Neurophysiological evidence of mutual relationships between brain regions measured by transfer entropy might enhance the understanding of cortico-cortical communication during drowsy driving

    Instanceeasytl: an improved transfer-learning method for EEG-based cross-subject fatigue detection

    Get PDF
    Electroencephalogram (EEG) is an effective indicator for the detection of driver fatigue. Due to the significant differences in EEG signals across subjects, and difficulty in collecting sufficient EEG samples for analysis during driving, detecting fatigue across subjects through using EEG signals remains a challenge. EasyTL is a kind of transfer-learning model, which has demonstrated better performance in the field of image recognition, but not yet been applied in cross-subject EEG-based applications. In this paper, we propose an improved EasyTL-based classifier, the InstanceEasyTL, to perform EEG-based analysis for cross-subject fatigue mental-state detection. Experimental results show that InstanceEasyTL not only requires less EEG data, but also obtains better performance in accuracy and robustness than EasyTL, as well as existing machine-learning models such as Support Vector Machine (SVM), Transfer Component Analysis (TCA), Geodesic Flow Kernel (GFK), and Domain-adversarial Neural Networks (DANN), etc

    Driving Fatigue Recognition with Functional Connectivity Based on Phase Synchronization

    Get PDF
    Accumulating evidences showed that the optimal brain network topology was altered with the progression of fatigue during car driving. However, the extent of discriminative power of functional connectivity that contribute to the driving fatigue detection is still unclear. In this study, we extracted two types of features (network properties and critical connections) to explore their usefulness in driving fatigue detection. EEG data were recorded twice from twenty healthy subjects during a simulated driving experiment. Multi-band functional connectivity matrices were established using phase lag index, which serve as input for the following graph theoretical analysis and critical connections determination between the most vigilant and fatigued states. We found a reorganisation of brain network towards less efficient architecture in fatigue state across all frequency bands. Further interrogations showed that the discriminative connections were mainly connected to frontal areas, i.e., most of the increased connections are from frontal pole to parietal or occipital regions. Moreover, we achieved a satisfactory classification accuracy (96.76%) using the discriminative connection features in β band. Our study demonstrated that graph theoretical properties and critical connections are of discriminative power for manifesting fatigue alterations and the critical connection is an efficient feature for driving fatigue detection

    A systematic review of physiological signals based driver drowsiness detection systems.

    Get PDF
    Driving a vehicle is a complex, multidimensional, and potentially risky activity demanding full mobilization and utilization of physiological and cognitive abilities. Drowsiness, often caused by stress, fatigue, and illness declines cognitive capabilities that affect drivers' capability and cause many accidents. Drowsiness-related road accidents are associated with trauma, physical injuries, and fatalities, and often accompany economic loss. Drowsy-related crashes are most common in young people and night shift workers. Real-time and accurate driver drowsiness detection is necessary to bring down the drowsy driving accident rate. Many researchers endeavored for systems to detect drowsiness using different features related to vehicles, and drivers' behavior, as well as, physiological measures. Keeping in view the rising trend in the use of physiological measures, this study presents a comprehensive and systematic review of the recent techniques to detect driver drowsiness using physiological signals. Different sensors augmented with machine learning are utilized which subsequently yield better results. These techniques are analyzed with respect to several aspects such as data collection sensor, environment consideration like controlled or dynamic, experimental set up like real traffic or driving simulators, etc. Similarly, by investigating the type of sensors involved in experiments, this study discusses the advantages and disadvantages of existing studies and points out the research gaps. Perceptions and conceptions are made to provide future research directions for drowsiness detection techniques based on physiological signals. [Abstract copyright: © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Applications of brain imaging methods in driving behaviour research

    Get PDF
    Applications of neuroimaging methods have substantially contributed to the scientific understanding of human factors during driving by providing a deeper insight into the neuro-cognitive aspects of driver brain. This has been achieved by conducting simulated (and occasionally, field) driving experiments while collecting driver brain signals of certain types. Here, this sector of studies is comprehensively reviewed at both macro and micro scales. Different themes of neuroimaging driving behaviour research are identified and the findings within each theme are synthesised. The surveyed literature has reported on applications of four major brain imaging methods. These include Functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), Functional Near-Infrared Spectroscopy (fNIRS) and Magnetoencephalography (MEG), with the first two being the most common methods in this domain. While collecting driver fMRI signal has been particularly instrumental in studying neural correlates of intoxicated driving (e.g. alcohol or cannabis) or distracted driving, the EEG method has been predominantly utilised in relation to the efforts aiming at development of automatic fatigue/drowsiness detection systems, a topic to which the literature on neuro-ergonomics of driving particularly has shown a spike of interest within the last few years. The survey also reveals that topics such as driver brain activity in semi-automated settings or the brain activity of drivers with brain injuries or chronic neurological conditions have by contrast been investigated to a very limited extent. Further, potential topics in relation to driving behaviour are identified that could benefit from the adoption of neuroimaging methods in future studies
    corecore