497 research outputs found

    Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system

    Get PDF
    Remotely sensed hyperspectral image classification is a very challenging task due to the spatial correlation of the spectral signature and the high cost of true sample labeling. In light of this, the collective inference paradigm allows us to manage the spatial correlation between spectral responses of neighboring pixels, as interacting pixels are labeled simultaneously. The transductive inference paradigm allows us to reduce the inference error for the given set of unlabeled data, as sparsely labeled pixels are learned by accounting for both labeled and unlabeled information. In this paper, both these paradigms contribute to the definition of a spectral-relational classification methodology for imagery data. We propose a novel algorithm to assign a class to each pixel of a sparsely labeled hyperspectral image. It integrates the spectral information and the spatial correlation through an ensemble system. For every pixel of a hyperspectral image, spatial neighborhoods are constructed and used to build application-specific relational features. Classification is performed with an ensemble comprising a classifier learned by considering the available spectral information (associated with the pixel) and the classifiers learned by considering the extracted spatio-relational information (associated with the spatial neighborhoods). The more reliable labels predicted by the ensemble are fed back to the labeled part of the image. Experimental results highlight the importance of the spectral-relational strategy for the accurate transductive classification of hyperspectral images and they validate the proposed algorithm

    A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data

    Get PDF
    The automatic classification of hyperspectral data is made complex by several factors, such as the high cost of true sample labeling coupled with the high number of spectral bands, as well as the spatial correlation of the spectral signature. In this paper, a transductive collective classifier is proposed for dealing with all these factors in hyperspectral image classification. The transductive inference paradigm allows us to reduce the inference error for the given set of unlabeled data, as sparsely labeled pixels are learned by accounting for both labeled and unlabeled information. The collective inference paradigm allows us to manage the spatial correlation between spectral responses of neighboring pixels, as interacting pixels are labeled simultaneously. In particular, the innovative contribution of this study includes: (1) the design of an application-specific co-training schema to use both spectral information and spatial information, iteratively extracted at the object (set of pixels) level via collective inference; (2) the formulation of a spatial-aware example selection schema that accounts for the spatial correlation of predicted labels to augment training sets during iterative learning and (3) the investigation of a diversity class criterion that allows us to speed-up co-training classification. Experimental results validate the accuracy and efficiency of the proposed spectral-spatial, collective, co-training strategy

    Transductive Learning for Spatial Data Classification

    Full text link
    Learning classifiers of spatial data presents several issues, such as the heterogeneity of spatial objects, the implicit definition of spatial relationships among objects, the spatial autocorrelation and the abundance of unlabelled data which potentially convey a large amount of information. The first three issues are due to the inherent structure of spatial units of analysis, which can be easily accommodated if a (multi-)relational data mining approach is considered. The fourth issue demands for the adoption of a transductive setting, which aims to make predictions for a given set of unlabelled data. Transduction is also motivated by the contiguity of the concept of positive autocorrelation, which typically affect spatial phenomena, with the smoothness assumption which characterize the transductive setting. In this work, we investigate a relational approach to spatial classification in a transductive setting. Computational solutions to the main difficulties met in this approach are presented. In particular, a relational upgrade of the nave Bayes classifier is proposed as discriminative model, an iterative algorithm is designed for the transductive classification of unlabelled data, and a distance measure between relational descriptions of spatial objects is defined in order to determine the k-nearest neighbors of each example in the dataset. Computational solutions have been tested on two real-world spatial datasets. The transformation of spatial data into a multi-relational representation and experimental results are reported and commented

    A Novel Neural-symbolic System under Statistical Relational Learning

    Full text link
    A key objective in field of artificial intelligence is to develop cognitive models that can exhibit human-like intellectual capabilities. One promising approach to achieving this is through neural-symbolic systems, which combine the strengths of deep learning and symbolic reasoning. However, current approaches in this area have been limited in their combining way, generalization and interpretability. To address these limitations, we propose a general bi-level probabilistic graphical reasoning framework called GBPGR. This framework leverages statistical relational learning to effectively integrate deep learning models and symbolic reasoning in a mutually beneficial manner. In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models. At the same time, the deep learning models assist in enhancing the efficiency of the symbolic reasoning process. Through extensive experiments, we demonstrate that our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks
    corecore