9 research outputs found

    Matrix-Monotonic Optimization for MIMO Systems

    Full text link
    For MIMO systems, due to the deployment of multiple antennas at both the transmitter and the receiver, the design variables e.g., precoders, equalizers, training sequences, etc. are usually matrices. It is well known that matrix operations are usually more complicated compared to their vector counterparts. In order to overcome the high complexity resulting from matrix variables, in this paper we investigate a class of elegant multi-objective optimization problems, namely matrix-monotonic optimization problems (MMOPs). In our work, various representative MIMO optimization problems are unified into a framework of matrix-monotonic optimization, which includes linear transceiver design, nonlinear transceiver design, training sequence design, radar waveform optimization, the corresponding robust design and so on as its special cases. Then exploiting the framework of matrix-monotonic optimization the optimal structures of the considered matrix variables can be derived first. Based on the optimal structure, the matrix-variate optimization problems can be greatly simplified into the ones with only vector variables. In particular, the dimension of the new vector variable is equal to the minimum number of columns and rows of the original matrix variable. Finally, we also extend our work to some more general cases with multiple matrix variables.Comment: 37 Pages, 5 figures, IEEE Transactions on Signal Processing, Final Versio

    Robust MMSE beamforming for multiantenna relay networks

    Get PDF
    In this paper, we propose a robust minimum mean square error (MMSE) based beamforming technique for multiantenna relay broadcast channels, where a multi-antenna base station transmits signal to single antenna users with the help of a multiantenna relay. The signal transmission from the base station to the single antenna users is completed in two time slots, where the relay receives the signal from the base station in the first time slot and it then forwards the received signal to different users based on amplify and forward protocol. We propose a robust beamforming technique for sum-power minimization problem with imperfect channel state information (CSI) between the relay and the users. This robust scheme is developed based on the worst-case optimization framework and Nemirovski Lemma by incorporating uncertainties in the CSI. The original optimization problem is divided into three subproblems due to joint non-convexity in terms of beamforming vectors at the base station, the relay amplification matrix, and receiver coefficients. These subproblems are formulated into a convex optimization framework by exploiting Nemirovski Lemma, and an iterative algorithm is developed by alternatively optimizing each of them with channel uncertainties. In addition, we provide an optimization framework to evaluate the achievable worst-case mean square error (MSE) of each user for a given set of design parameters. Simulation results have been provided to validate the convergence of the proposed algorithm

    On Secrecy Performance of MISO SWIPT Systems With TAS and Imperfect CSI

    Get PDF
    In this paper, a multiple-input single-output (MISO) simultaneous wireless information and power transfer (SWIPT) system, including one base station (BS) equipped with multiple antennas, one desired single-antenna information receiver (IR), and N (N > 1) single-antenna energy-harvesting receivers (ERs) is considered. Assuming that the information signal to the desired IR may be eavesdropped by ERs if ERs are malicious, we investigate the secrecy performance of the target MISO SWIPT system when imperfect channel state information (CSI) is available and adopted for transmit antenna selection at the BS. Considering that each eavesdropping link experiences independent but not necessarily identically distributed Rayleigh fading, the closed-form expressions for the exact and the asymptotic secrecy outage probability, and the average secrecy capacity are derived and verified by simulations. Furthermore, the optimal power splitting factor is derived for each ER to realize the tradeoff between the energy harvesting and the information eavesdropping. Our results reveal the impact of the imperfect CSI on the secrecy performance of MISO SWIPT systems in the presence of multiple wiretap channels
    corecore