73,007 research outputs found

    Inherent Limitations of Hybrid Transactional Memory

    Full text link
    Several Hybrid Transactional Memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort, nature of Hardware Transactional Memory (HTM) with a slow, reliable software backup. However, the fundamental limitations of building a HyTM with nontrivial concurrency between hardware and software transactions are still not well understood. In this paper, we propose a general model for HyTM implementations, which captures the ability of hardware transactions to buffer memory accesses, and allows us to formally quantify and analyze the amount of overhead (instrumentation) of a HyTM scheme. We prove the following: (1) it is impossible to build a strictly serializable HyTM implementation that has both uninstrumented reads and writes, even for weak progress guarantees, and (2) under reasonable assumptions, in any opaque progressive HyTM, a hardware transaction must incur instrumentation costs linear in the size of its data set. We further provide two upper bound implementations whose instrumentation costs are optimal with respect to their progress guarantees. In sum, this paper captures for the first time an inherent trade-off between the degree of concurrency a HyTM provides between hardware and software transactions, and the amount of instrumentation overhead the implementation must incur

    Open Transactions on Shared Memory

    Full text link
    Transactional memory has arisen as a good way for solving many of the issues of lock-based programming. However, most implementations admit isolated transactions only, which are not adequate when we have to coordinate communicating processes. To this end, in this paper we present OCTM, an Haskell-like language with open transactions over shared transactional memory: processes can join transactions at runtime just by accessing to shared variables. Thus a transaction can co-operate with the environment through shared variables, but if it is rolled-back, also all its effects on the environment are retracted. For proving the expressive power of TCCS we give an implementation of TCCS, a CCS-like calculus with open transactions

    Preemptive Software Transactional Memory

    Get PDF
    In state-of-the-art Software Transactional Memory (STM) systems, threads carry out the execution of transactions as non-interruptible tasks. Hence, a thread can react to the injection of a higher priority transactional task and take care of its processing only at the end of the currently executed transaction. In this article we pursue a paradigm shift where the execution of an in-memory transaction is carried out as a preemptable task, so that a thread can start processing a higher priority transactional task before finalizing its current transaction. We achieve this goal in an application-transparent manner, by only relying on Operating System facilities we include in our preemptive STM architecture. With our approach we are able to re-evaluate CPU assignment across transactions along a same thread every few tens of microseconds. This is mandatory for an effective priority-aware architecture given the typically finer-grain nature of in-memory transactions compared to their counterpart in database systems. We integrated our preemptive STM architecture with the TinySTM package, and released it as open source. We also provide the results of an experimental assessment of our proposal based on running a port of the TPC-C benchmark to the STM environment

    TMbarrier: speculative barriers using hardware transactional memory

    Get PDF
    Barrier is a very common synchronization method used in parallel programming. Barriers are used typically to enforce a partial thread execution order, since there may be dependences between code sections before and after the barrier. This work proposes TMbarrier, a new design of a barrier intended to be used in transactional applications. TMbarrier allows threads to continue executing speculatively after the barrier assuming that there are not dependences with safe threads that have not yet reached the barrier. Our design leverages transactional memory (TM) (specifically, the implementation offered by the IBM POWER8 processor) to hold the speculative updates and to detect possible conflicts between speculative and safe threads. Despite the limitations of the best-effort hardware TM implementation present in current processors, experiments show a reduction in wasted time due to synchronization compared to standard barriers.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

    Get PDF
    Frequent itemset mining leads to the discovery of associations and correlations among items in large transactional databases. Apriori is a classical frequent itemset mining algorithm, which employs iterative passes over database combining with generation of candidate itemsets based on frequent itemsets found at the previous iteration, and pruning of clearly infrequent itemsets. The Dynamic Itemset Counting (DIC) algorithm is a variation of Apriori, which tries to reduce the number of passes made over a transactional database while keeping the number of itemsets counted in a pass relatively low. In this paper, we address the problem of accelerating DIC on the Intel Xeon Phi many-core system for the case when the transactional database fits in main memory. Intel Xeon Phi provides a large number of small compute cores with vector processing units. The paper presents a parallel implementation of DIC based on OpenMP technology and thread-level parallelism. We exploit the bit-based internal layout for transactions and itemsets. This technique reduces the memory space for storing the transactional database, simplifies the support count via logical bitwise operation, and allows for vectorization of such a step. Experimental evaluation on the platforms of the Intel Xeon CPU and the Intel Xeon Phi coprocessor with large synthetic and real databases showed good performance and scalability of the proposed algorithm.Comment: Accepted for publication in Journal of Computing and Information Technology (http://cit.fer.hr
    corecore