7,664 research outputs found

    Smart hierarchical WiFi localization system for indoors

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014En los últimos años, el número de aplicaciones para smartphones y tablets ha crecido rápidamente. Muchas de estas aplicaciones hacen uso de las capacidades de localización de estos dispositivos. Para poder proporcionar su localización, es necesario identificar la posición del usuario de forma robusta y en tiempo real. Tradicionalmente, esta localización se ha realizado mediante el uso del GPS que proporciona posicionamiento preciso en exteriores. Desafortunadamente, su baja precisión en interiores imposibilita su uso. Para proporcionar localización en interiores se utilizan diferentes tecnologías. Entre ellas, la tecnología WiFi es una de las más usadas debido a sus importantes ventajas tales como la disponibilidad de puntos de acceso WiFi en la mayoría de edificios y que medir la señal WiFi no tiene coste, incluso en redes privadas. Desafortunadamente, también tiene algunas desventajas, ya que en interiores la señal es altamente dependiente de la estructura del edificio por lo que aparecen otros efectos no deseados, como el efecto multicamino o las variaciones de pequeña escala. Además, las redes WiFi están instaladas para maximizar la conectividad sin tener en cuenta su posible uso para localización, por lo que los entornos suelen estar altamente poblados de puntos de acceso, aumentando las interferencias co-canal, que causan variaciones en el nivel de señal recibido. El objetivo de esta tesis es la localización de dispositivos móviles en interiores utilizando como única información el nivel de señal recibido de los puntos de acceso existentes en el entorno. La meta final es desarrollar un sistema de localización WiFi para dispositivos móviles, que pueda ser utilizado en cualquier entorno y por cualquier dispositivo, en tiempo real. Para alcanzar este objetivo, se propone un sistema de localización jerárquico basado en clasificadores borrosos que realizará la localización en entornos descritos topológicamente. Este sistema proporcionará una localización robusta en diferentes escenarios, prestando especial atención a los entornos grandes. Para ello, el sistema diseñado crea una partición jerárquica del entorno usando K-Means. Después, el sistema de localización se entrena utilizando diferentes algoritmos de clasificación supervisada para localizar las nuevas medidas WiFi. Finalmente, se ha diseñado un sistema probabilístico para seguir la posición del dispositivo en movimiento utilizando un filtro Bayesiano. Este sistema se ha probado en un entorno real, con varias plantas, obteniendo un error medio total por debajo de los 3 metros

    Automated semantic trajectory annotation with indoor point-of-interest visits in urban areas

    Get PDF
    User trajectories contain a wealth of implicit information. The places that people visit, provide us with information about their preferences and needs. Furthermore, it provides us with information about the popularity of places, for example at which time of the year or day these places are frequently visited. The potential for behavioral analysis of trajectories is widely discussed in literature, but all of these methods need a pre-processing step: the geometric trajectory data needs to be transformed into a semantic collection or sequence of visited points-of-interest that is more suitable for data mining. Especially indoor activities in urban areas are challenging to detect from raw trajectory data. In this paper, we propose a new algorithm for the automated detection of visited points-of-interest. This algorithm extracts the actual visited points-of-interest well, both in terms of precision and recall, even for the challenging urban indoor activity detection. We demonstrate the strength of the algorithm by comparing it to three existing and widely used algorithms, using annotated trajectory data, collected through an experiment with students in the city of Hengelo, The Netherlands. Our algorithm, which combines multiple trajectory pre-processing techniques from existing work with several novel ones, shows significant improvements

    An efficient online direction-preserving compression approach for trajectory streaming data

    Get PDF
    Online trajectory compression is an important method of efficiently managing massive volumes of trajectory streaming data. Current online trajectory methods generally do not preserve direction information and lack high computing performance for the fast compression. Aiming to solve these problems, this paper first proposed an online direction-preserving simplification method for trajectory streaming data, online DPTS by modifying an offline direction-preserving trajectory simplification (DPTS) method. We further proposed an optimized version of online DPTS called online DPTS+ by employing a data structure called bound quadrant system (BQS) to reduce the compression time of online DPTS. To provide a more efficient solution to reduce compression time, this paper explored the feasibility of using contemporary general-purpose computing on a graphics processing unit (GPU). The GPU-aided approach paralleled the major computing part of online DPTS+ that is the SP-theo algorithm. The results show that by maintaining a comparable compression error and compression rate, (1) the online DPTS outperform offline DPTS with up to 21% compression time, (2) the compression time of online DPTS+ algorithm is 3.95 times faster than that of online DPTS, and (3) the GPU-aided method can significantly reduce the time for graph construction and for finding the shortest path with a speedup of 31.4 and 7.88 (on average), respectively. The current approach provides a new tool for fast online trajectory streaming data compression

    Review and classification of trajectory summarisation algorithms: From compression to segmentation

    Get PDF
    With the continuous development and cost reduction of positioning and tracking technologies, a large amount of trajectories are being exploited in multiple domains for knowledge extraction. A trajectory is formed by a large number of measurements, where many of them are unnecessary to describe the actual trajectory of the vehicle, or even harmful due to sensor noise. This not only consumes large amounts of memory, but also makes the extracting knowledge process more difficult. Trajectory summarisation techniques can solve this problem, generating a smaller and more manageable representation and even semantic segments. In this comprehensive review, we explain and classify techniques for the summarisation of trajectories according to their search strategy and point evaluation criteria, describing connections with the line simplification problem. We also explain several special concepts in trajectory summarisation problem. Finally, we outline the recent trends and best practices to continue the research in next summarisation algorithms.The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was funded by public research projects of Spanish Ministry of Economy and Competitivity (MINECO), reference TEC2017-88048-C2-2-

    Investigations sur la fréquence d’échantillonnage de la mobilité

    Get PDF
    Recent studies have leveraged tracking techniques based on positioning technologiesto discover new knowledge about human mobility. These investigations have revealed, amongothers, a high spatiotemporal regularity of individual movement patterns. Building on these findings,we aim at answering the question “at what frequency should one sample individual humanmovements so that they can be reconstructed from the collected samples with minimum loss of information?”.Our quest for a response leads to the discovery of (i) seemingly universal spectralproperties of human mobility, and (ii) a linear scaling law of the localization error with respectto the sampling interval. Our findings are based on the analysis of fine-grained GPS trajectoriesof 119 users worldwide. The applications of our findings are related to a number of fields relevantto ubiquitous computing, such as energy-efficient mobile computing, location-based service operations,active probing of subscribers’ positions in mobile networks and trajectory data compression.Des études récentes ont mis à profit des techniques de suivi basées sur des technologiesde positionnement pour étuder la mobilité humaine. Ces recherches ont révélé, entreautres, une grande régularité spatio-temporelle des mouvements individuels. Sur la base de cesrésultats, nous visons à répondre à la question «à quelle fréquence doit-on échantillonner lesmouvements humains individuels afin qu’ils puissent être reconstruits à partir des échantillonsrecueillis avec un minimum de perte d’information? Notre recherche d’une réponse à cette questionnous a conduit à la découverte de (i) propriétés spectrales apparemment universelles de lamobilité humaine, et (ii) une loi de mise à l’échelle linéaire de l’erreur de localisation par rapportà l’intervalle d’échantillonnage. Nos résultats sont basés sur l’analyse des trajectoires GPS de119 utilisateurs dans le monde entier. Les applications de nos résultats sont liées à un certainnombre de domaines pertinents pour l’informatique omniprésente, tels que l’informatique mobileéconome en énergie, les opérations de service basées sur l’emplacement, le sondage actif despositions des abonnés dans les réseaux mobiles et la compression des données de trajectoire

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Unsupervised trajectory compression

    Get PDF
    We present a method for compressing trajectories in an unsupervised manner. Given a set of trajectories sampled from a space we construct a basis for compression whose elements correspond to paths in the space which are topologically distinct. This is achieved by computing a canonical representative for each element in a generating set for the first homology group and decomposing these representatives into a set of distinct paths. Trajectory compression is subsequently accomplished through representation in terms of this basis. Robustness with respect to outliers is achieved by only considering those elements of the first homology group which exist in the super-level sets of the Kernel Density Estimation (KDE) above a threshold. Robustness with respect to small scale topological artifacts is achieved by only considering those elements of the first homology group which exist for a sufficient range in the super-level sets. We demonstrate this approach to trajectory compression in the context of a large set of crowd-sourced GPS trajectories captured in the city of Chicago. On this set, the compression method achieves a mean geometrical accuracy of 108 meters with a compression ratio of over 12
    corecore