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h i g h l i g h t s

• An online compression method for trajectory streaming data is developed to preserve error-bound direction information.
• An advanced online DPTS algorithm with a BQS structure is proposed which can significantly reduce the compression time.
• A parallel method of the online DPTS+ on a GPU platform is implemented, which further improved the time efficiency.

a b s t r a c t

Online trajectory compression is an important method of efficiently managing massive volumes of trajec-tory streaming data. Current online 
trajectory methods generally do not preserve direction information and lack high computing performance for the fast compression. Aiming to solve 
these problems, this paper first proposed an online direction-preserving simplification method for trajectory streaming data, online DPTS by 
modifying an offline direction-preserving trajectory simplification (DPTS) method. We further proposed an optimized version of online DPTS called
online DPTS

+
 by employing a data structure called bound quadrant system (BQS) to reduce the compression time of online DPTS. To provide a more efficient solution to reduce compression time, this paper explored the feasibility of using contemporary general-purpose computing on a graphics 

processing unit (GPU). The GPU-aided approach paralleled the major computing part of online DPTS
+

 that is the SP-theo algorithm. The results show that by maintaining a comparable compression error and compression rate, (1) the online DPTS outperform offline DPTS with up to 21% 
compression time, (2) the compression time of online DPTS

+
 algorithm is 3.95 times faster than that of online DPTS, and (3) the GPU-aided method can significantly reduce the time for graph con-struction and for finding the shortest path with a speedup of 31.4 and 7.88 (on average), respectively. 

The current approach provides a new tool for fast online trajectory streaming data compression.
1. Introduction

Recent advances in sensing, networking, smart grid [1], smart
home [2], and location acquisition technologies have led to a
huge volume of trajectory streaming data (e.g., Global Positioning
System (GPS) trajectories). There are three main challenges when
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there is such a huge volume of data: (1) storing the sheer
volume of trajectory data may overwhelm available storage space,
(2) the cost of transmitting a large amount of trajectory data over
cellular or satellite networks can be expensive, and the large size of
trajectory data makes it very difficult to discover useful patterns.
Trajectory compression technologies can provide a solution for
these challenges [3].

Trajectory data compression approaches are generally divided
into two categories: offline or online compression [4]. The of-
fline methods (e.g., Douglas–Peucker [5] and TD–TR [6]) discard
some locations with negligible errors from an original trajectory,

https://core.ac.uk/display/146471249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.future.2016.09.019
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.09.019&domain=pdf
mailto:lizhe.wang@gmail.com
http://dx.doi.org/10.1016/j.future.2016.09.019


which is already obtained before the compression process [7].
However, in many applications the trajectory data of the mov-
ing objects arrive in a stream. These applications include real-
time trajectory tracking [8] and long-term location tracking [9].
Therefore, some online compression approaches have been pro-
posed to deal with this case. The basic idea is to use segment
heuristic for trajectory and remove some points of the recently
received trajectories. Representative methods include the open-
ing window algorithm [10], dead reckoning [11], and SQUISH-
E(λ) [12]. However, existing online compression approaches have
some drawbacks. First, according to [13], nearly all trajectory com-
pression approaches are position-preserving trajectory simplifica-
tion (PPTS) methods. These methods lose direction information so
that many applications based on location-based service (LBS) can-
not be broadly supported. Although two direction-preserving tra-
jectory simplification (DPTS) methods [13,14] have been proposed
to solve this issue, these twomethods are designed for offline com-
pression. To the best of our knowledge, no online DPTS method
has been proposed to date. Second, current online approaches have
individual drawbacks in terms of either time costs, compression
ratio, and error boundaries. For example, the opening window al-
gorithm suffers from O(n2) time complexity [12] and dead reck-
oning suffers from a low compression ratio. Meanwhile, the high
efficiency of compression is a key requirement for current online
trajectory compression methods because the volume and density
of streaming data have been rapidly growing. Therefore, there is
a need for an efficient direction-preserving compression approach
for trajectory streaming data.

To address these research challenges, we propose an online
direction-preserving trajectory compressionmethod for trajectory
streaming data that modifies an offline DPTS method [15], after
which a data structure called a bounded quadrant system (BQS)
[9,16] is used to optimize our compression method. Furthermore,
a modern GPU platform is used to improve the performance of our
trajectory compression method.

The main contributions of this study are as follows:

1. We have developed an online trajectory compression method
for trajectory streaming data called online DPTS that preserves
error-bound direction information and has a high compression
ratio.

2. We have introduced an advanced online DPTS algorithm called
online DPTS+ with a BQS structure in [9,16] can significantly
reduce the compression time of online DPTS.

3. We designed a parallel method of the online DPTS+ on a
GPU platform, which further improved the time efficiency of
trajectory streaming data compression. The GPU-aided method
accelerate the SP-theo algorithm in the online DPTS+, with two
well-designed GPU parallel schemes.

4. We performed extensive experiments to evaluate the proposed
methods using real trajectory datasets.

To the best of our knowledge, the proposed compression
method is the first online trajectory compression method that
takes both direction preserving and parallel processing into con-
sideration.

The remainder of this paper is organized as follows: Section 2
discusses work relating to online trajectory compression. Sec-
tion 3 introduces our online trajectory compression approaches
(i.e., online DPTS and online DPTS+). Section 4 describes the GPU-
aided compression approach on a modern GPU platform. Section 5
presents the experiments and performance evaluation results of
the proposed approaches. Section 6 concludeswith a summary and
a plan for future work.
2. Related work

A number of successful attempts have beenmade regarding on-
line trajectory compression. The most salient works are described.

Opening window (OPW) is a kind of traditional online trajec-
tory compression algorithm. Such algorithms, including NOWA
and BOPW [10], slide a window over the points on the original tra-
jectory to approximate each trajectory using the number of points
in the window so that the resulting spatial error is smaller than a
bound. This process is repeated until the last point of the original
trajectory is processed. The worst-case time complexity of OPW is
O(n2). Opening window time ratio (OPW-TR) [10] extended OPW
using a synchronized Euclidean distance (SED) error instead of spa-
tial error.

Some fast online trajectory compression algorithms have been
proposed to overcome the high time overheads of OPW and OPW-
TR. These include uniform sampling [17] and dead reckoning [11].
The uniform sampling method carefully selects a few points to
store anddiscards the remainingpoints at every given time interval
or distance interval. Dead reckoning stores the location of the first
point and the velocity at this point. It then skips every subsequent
point whose location can be estimated from the information about
the first point within the given SED value until it finds one point
whose location cannot be estimated. The location of the point
and the speed at the point are stored and used to estimate the
locations of following points. This process is repeated until the
input trajectory ends. The computational complexity of this kind
of method is O(n). However, the major drawback of this kind of
method is the lower compression rates compared with OPW and
OPW-TR. Therefore, a few online trajectory compression methods
that can ensure both a high compression ratio and low computing
overheads have been presented. For example, given parameters
λ and µ, SQUISH-E can ensure a compression ratio of λ while
preventing the SED errors that are not beyond µ. However, this
algorithm does not preserve direction information.

Significantly different from the existing online trajectory com-
pression methods, this paper focuses on the emerging challenges
of (1) the direction-preserved online trajectory compression with
error boundary and high compression rate and (2) enabling a
high-performance solution to maintain the computational perfor-
mance of the proposed method for trajectory streaming data. The
proposed compression method is the first online trajectory com-
pression method that takes direction preserving and parallel pro-
cessing into consideration.

3. Online DPTS: online direction-preserved trajectory simplifi-
cation

In this section, we formulate the problem, present the details of
the proposed compression algorithm, and describe the algorithm
optimization.

3.1. Problem formulation

In our setting, a central server continuously collects the location
points of moving objects over time. Thus, such points relating to a
moving object O form a trajectory stream. Noted that, the issue of
streaming inconsistency, whichmeans the order of location points
in the original stream (in input) is different from the output, may
happen because the server needs to receive location information of
multiple moving objects concurrently. However, in this paper, we
assume that the consistency of streaming has been achieved. In the
future, we will consider the issue of streaming inconsistency and
attempt to employ somemethods such as in [18] or [19] to reorder
the input streaming data before compressing trajectories.



Definition 1 (Location Point). A location point, denoted as p = (x,
y, t), is a tuple that records the latitude, longitude, and timestamp
of one location sample.

Definition 2 (Trajectory Segment). A trajectory segment, denoted
as g = {p1, . . . , pn}, is a set of continuous location points.

Definition 3 (Compressed Trajectory Segment). A compressed tra-
jectory segment, denoted as g ′ = {ps1, ps2, . . . , psm}, is the sim-
plification of g = {p1, p2, . . . , pn}where all points from ps1 to psm
are consecutive and contained in g .

Definition 4 (Trajectory Stream). A trajectory stream, denoted as
S = {g1, g2, . . .}, consists of an unbounded set of trajectory
segments.

Definition 5 (Compressed Trajectory Stream). For a trajectory
stream S = {g1, g2, . . . , gk, . . .}, the compressed trajectory stream
is defined as an unbounded set of compressed segments S ′ =
{g ′1, g

′

2, . . . , g
′

k, . . .}, where g ′i is the simplification of gi ∈ S.

Definition 6 (The Direction of Trajectory Segment Line).Given a line
in a trajectory segment g = {p1, . . . , pn} that is denoted as a vector
−→
l = −−→pi, pj where 1 ≤ i < j ≤ n− 1, the direction of

−→
l , denoted

as θ(
−→
l ) = θ(

−−→pi, pj), is defined as the angle of an anticlockwise
rotation from the position of the x-axis to the vector−−→pi, pj.

Definition 7 (The Angular Difference Between Two Directions). For
two directions θ1 and θ2, the angular difference between θ1 and
θ2, denoted by ∆(θ1, θ2), is defined as the minimum of the angle
of the anticlockwise rotation from θ1 to θ2 and that from θ2 to θ1,
i.e., ∆(θ1, θ2) = min{|θ1− θ2|, 2π − |θ1− θ2|}.

Definition 8 (The Compression Error of a Segment Line in g ′). Let g ′
be a compression trajectory segment for a trajectory segment g.
Given a segment line

−→
lj =
−−−−→pj, pj+1 in g ′, the compression error of

−→
lj , denoted by ϵ(

−→
lj ), is defined as the greatest angular difference

between θ(
−→
lj ) and θ(

−→
lk ), where

−→
lk =

−−−−→pk, pk+1 is one segment
line in g approximated by

−→
lj . That means:

ϵ(
−→
lj ) = Max(∆(θ(

−→
lj ), θ(

−→
lk ))),

where (lj.pj.t ≤ lk.pk.t) ∧ (lk.pk+1.t ≤ lj.pj+1.t).
(1)

Definition 9 (The Compression Error of S ′). The compression error
of compressed trajectory stream S ′, denoted by ε(S ′), is defined as
the maximum error of a compressed segment in S ′, i.e.,

ε(S ′) = Max(ϵ(lj)),
where (lj is one compressed segment line in S ′). (2)

Here, the objective is to quickly compress a trajectory stream S
to form the corresponding compressed trajectory stream S ′ at one
snapshot. As a result, ε(S ′) is boundedwith one direction threshold
and S ′ has the smallest size.

3.2. Algorithm description

We proposed an online DPTS that combines an offline DPTS
approach [15] and BQS data structure for online trajectory
compression [12]. First, we introduce the offline DPTS approach,
convert the offline-DPTS to its online version, and optimize the
online DPTS using a BQS.

In [15], the authors proposed an implementation of direction-
preserving simplification called a SP algorithm for the smallest size
that is error-bound under a threshold ϵt . The SP algorithm consists
of three steps:
Step 1: (Graph Construction): Constructing a graph with an error
tolerance threshold, denoted as Gϵt , based on an offline
trajectory so that the error value of each edge−−→pi, pj (i < j)
in Gϵt , ϵ(

−−→pi, pj) ≤ ϵt .
Step 2: (Shortest Path Finding): Computing the shortest path

based on the graph Gϵt from Step 1.
Step 3: (SolutionGeneration): Generating the solution for direction-

preserving trajectory compression using the shortest path
found in Step 2.

In Step 1, one straightforward solution for constructing Gϵt is
to try all possible pairs of −−→pi, pj (1 ≤ i < j ≤ n) to check whether
ϵ(
−−→pi, pj) ≤ ϵt . The time complexity of Step 1 is O(n3) because there

exist O(n2) pairs of (−−→pi, pj) and the checking cost is O(n), where
n is the number of points in the trajectory. In Step 2, a breadth
first search (BFS) procedure is employed to find the shortest path
based on Gϵt . The time complexity of Step 2 is O(m2) where m is
the number of points in Gϵt . For Step 3, it takes O(m) time to find
the solution. Therefore, the time complexity of the SP algorithm is
O(n3).

According to the description of the SP algorithm, the dominant
time-consumption part of SP focuses on Step 1. To improve
the time efficiency of Step 1, a variant of the SP algorithm
called SP-theo is proposed in [15]. SP-theo employs a concept
called ‘‘feasible direction range’’ to reduce the time complexity of
checking whether ϵ(

−−→pi, pj) ≤ ϵt from O(n) to O(c), where c is a
small constant in cost cases. For a segment line−−−−→ph, ph+1 (1 ≤ h <
n) in a trajectory T , the feasible direction range of −−−−→ph, ph+1 with
respect to one error tolerance ϵt , is denoted as fdr(−−−−→ph, ph+1|ϵt) =
[θ(
−−−−→ph, ph+1)− ϵt , θ(

−−−−→ph, ph+1)+ ϵt ]mod 2π .
Then, let T [i, j] = {pi, pi+1, . . . , pj} be the sub-trajectory of

T . The feasible direction range of T [i, j] with respect to ϵt is
denoted by fdr(T [i, j]|ϵt). Based on Lemma 4 in [15], if θ(

−−→pi, pj) is
in fdr(T [i, j]|ϵt), ϵt(θ(

−−→pi, pj)) ≤ ϵt . Therefore, checking whether
ϵ(θ(
−−→pi, pj)) < ϵt in the SP-theo algorithm is equivalent to checking

if ϵ(θ(
−−→pi, pj)) is in fdr(T [i, j]|ϵt). Because the size of fdr(T [i, j]|ϵt)

is bounded by min{1 +


ϵt
π−ϵt


, j − i}, the computing cost can

be bounded by a constant c. Therefore, the time complexity of
constructing graph part of SP-theo is O(c · n2), as there are O(n2)
times of checking whether ϵ(

−−→pi, pj) < ϵt and each check can be
done in O(c) time with fdr(T [i, j]|ϵt). Meanwhile, the fdr(T [i, j]|ϵt)
set can be incrementally computed using the following equation:

fdr(T [i, j]|ϵt) = fdr(T [i, j− 1]|ϵt) ∩ fdr(−−−−→pj−1, pj),
where 1 ≤ i < j ≤ n. (3)

In this paper, we employ the SP-theo algorithm to compress an
online trajectory stream S. The basic idea is that we incrementally
compress S with the SP-theo algorithm and Eq. (3). The online
compression algorithm is shown in Algorithm 1, which works as
follows. Initially, we input all sample points in the first trajectory
segment g1 of S into Q (see line 6 in Algorithm 1). We then execute
the SP-theo algorithm with Eq. (3) over these points to get a
shortest path sp that is stored in Q (see line 8 and lines 14–21).
We treat the sp as the compressed trajectory and append all points
in sp to the tail of S ′ (see line 9). Next, we update Q to only keep
the last two points (see line 10). The process is repeated until all
trajectory segments in S are processed.

As an example, given a trajectory stream S consisting of two
trajectory segments {g1, g2}, Fig. 1 illustrates the compression
procedure. The trajectory segment g1 = {p1, p2, p3, p4, p5} is
compressed using SP-theo to get the shortest path sp = {p1, p2,
p3, p5} and store it in S ′. We thenmerge the last two points {p3, p5}
and the next trajectory segment g2 = {p6, p7, p8, p9, p10, p11, p12}



Fig. 1. Example of the online DPTS algorithm.

into the new trajectory segment Q = {p3, p5, p6, p7, p8, p9, p10,
p11, p12} and compress Q using SP-theo again. As a result, Q = {p3,
p6, p7, p8, p9, p12}. Finally,wemergeQ and S ′ in the previous round
to get the current S ′ = {p1, p2, p3, p6, p7, p8, p9, p12}. Note that
for each round we need to keep the last two points instead of just
the last point to avoid keeping the points that should have been
abandoned. For instance, in Fig. 1, the point p5 can be removed
through our scheme. As we can see, the proposed algorithm can
process one trajectory stream by repeatedly calling the SP-theo
algorithm in each trajectory segment. The time complexity of
our algorithm is still O(c · n2) for each trajectory segment, as
we employed the SP-theo algorithm. Therefore, the algorithm
processing efficiency still needs to be improved for processing the
trajectory stream. In the following section, we propose how to
improve the time efficiency of our algorithm.

Algorithm 1: The description of online DPTS
1 Online DPTS_Procedure(S, ϵt )/* Input: S is a

trajectory streaming data on one time
snapshot, ϵt is the upper bound on
direction error tolerance. Output: S’ is
the compressed trajectory streaming data
on the time snapshot. */

2 Initialize a queue Q← {}
3 Initialize S’← {}
4 Initialize a fdr set F← {}
5 for each trajectory segment gi ∈ S; i++ do
6 Append all points in gi into Q
7 if Q.length > 2 then
8 Q← do_SP-theo(Q, F, ϵt )
9 S’← Q

10 remove all points in Q but the last two points
11 end
12 end
13 return S’

/* run the SP-theo algorithm on the current
trajectory streaming data */

14 do_SP-theo(Q, F, ϵt )
15 Compute incrementally all new fdr sets = {fdr set} from Q

with F and equation (3)
16 F← {fdr set} ∪ F
17 Construct a Gϵt on Q with F
18 Set s_node as the first point in Q
19 Set e_node as the last point in Q
20 Get the shortest path sp from s_node to e_node with BFS
21 return sp
Fig. 2. Example of bounding Lmax .

3.3. Algorithm optimization

Aswe can see, the time complexity of the proposed online DPTS
for each trajectory segment is O(c · n2) because there exist n2

pairs of (−−→pi, pj) in each trajectory segment and the checking cost is
O(c), where n is the number of points in one trajectory segment.
Our heuristic optimization scheme is to reduce the number of
pairs of (−−→pi, pj) before using the SP-theo algorithm to compress
a trajectory segment g in S. Consequently, the total runtime of
compressing S can be significantly reduced. To achieve this goal,
we employed a BQS data structure applied in an online PPTS
trajectory compressionmethod [9,16] to filter trajectory segments.
In [9,16], BQS is a convex hull that is formed by a bounding box and
two angular bounds around all points to be compressed. Then, the
PPTS compression method can be used to make fast compression
decisions without calculating the maximum error in most cases.
However, the BQS structure is based on the position error rather
than the direction error. Therefore, we first propose one scheme to
transform the direction error to the position error to employ the
BQS structure, and then we introduce the optimized online DPTS
algorithm using the BQS structure.

3.3.1. The transformation scheme
According to the descriptions of LEMMA 2 in [13], the DPTS

method can give an error bound on the position ϵd when the
direction error tolerance ϵt < π/2. This means the following
inequality holds:

ϵd ≤ 0.5 · tan(ϵt) · Lmax, (4)

where Lmax = Max(len(
−→
li |T ′)) and len(

−→
li |T ′) is the distance

length of a segment line
−→
li in the compressed trajectory T ′.

Therefore, by using the formula (4), it appears that we can
transform a direction error ϵt into its corresponding position error
ϵd and can apply the BQS to filter the trajectory stream S. However,
the value of Lmax in the formula (4) is generally unknown a priori
unless we finish thewhole compression procedure. To address this
issue, we first present a theorem:

Theorem 1. Given a compression trajectory T ′, Lmax is bounded by
the length of the diagonal line of the convex hull contain all points in
T .

Proof of Theorem 1. We use an example shown in Fig. 2 to prove
Theorem 1. As we can see in Fig. 2, for a trajectory T =

{p1, p2, p3, p4, p5, p6, p7, p8}, the corresponding convex hull is able
to be represented by a box B = {C1, C2, C3, C4}. Given T ′ =
{p1, p4, p8, p9} is a compressed trajectory of T , it is easy to discover
that the length of any diagonal line of B (i.e., C1C3 or C2C4) is greater
than the length of any segment line in T ′.



Fig. 3. Example of constructing BQS for a trajectory segment.
In our setting, a trajectory stream S consists of a set of trajectory
segments = {g1, g2, . . . , gm} so that the compression of S will
sequentially compress these trajectory segments with the SP-theo
algorithm (see algorithm 1). Therefore, for every compression
procedure of one trajectory segment gi(1 ≤ i ≤ m), the value of
Lmax, which is defined as Lmax(gi), can be bounded by the length of
one diagonal line of a convex hull over all points in gi that is defined
to be LD(gi). That means the position error of gi, which is defined as
ϵd(gi), is bounded by the following inequality:

ϵd(gi) ≤ 0.5 · tan(ϵt) · Lmax(gi) ≤ 0.5 · tan(ϵt) · LD(gi). (5)

3.3.2. Optimizing the online DPTS algorithm using BQS
After the above-mentioned transformation from ϵt to ϵd, we can

construct the corresponding BQS to filter each trajectory segment.
The procedure is illustrated in Fig. 3.

In Fig. 3, for a trajectory segment g, we first buffer a few points
(i.e., from p1 to p7). We then treat p1 as the start point and p8 as
a new incoming point to be checked. For convenience, we assume
all points (i.e., from p2 to p7) in the buffer are within ϵd(g)w.r.t. p1.
In fact, the assumption can be relaxed because we still can use the
following SP-theo algorithm to process these points. Because the
number of these points is very small, the compression performance
is slightly influenced. Therefore, one BQS structure is constructed
according to the following steps:

Step 1: Split the space into four quadrants from the start point p1
of the current segment.

Step 2: For each quadrant where there exist points, a bounding
box (i.e., C1C2C3C4) is set for points (from p2 to p7) in this
quadrant.

Step 3: Two bounding lines record the smallest and greatest
angles between the x axis and the line from the start point
to any points for each quadrant (i.e., θ l and θu).
Step 4: Get atmost eight significant points, including four vertices
on the bounding box (i.e., C1C2C3C4) and four intersection
points frombounding lines intersectingwith the bounding
box (i.e., l1, l2, u1, u2).

Step 5: Based on the position deviations between lines from the
start point to the significant points and the current path
line(i.e.,−−−→p1, p8), we get a group of lower bound candidates
and upper bound candidates for the maximum position
deviation.

Step 6: From these candidates, a pair consisting of a lower
bound and an upper bound ⟨dlb, dub⟩ is derived to make
compression decisions without the full computation of
segment direction deviation in most of cases.

The pair of ⟨dlb, dub⟩ can be computed using the formula (7),
(8), (9), (10) in [9]. Based on the pair of bounds and the converted
position error ϵd(g), the new incoming point p8 can be determined
using the following rules:

Rule 1: If the position distance between p1 and p8d(p1, p8) ≤
ϵd(g), p8 belongs to the current segment and a new
segment does not need to be started.

Rule 2: If dub ≤ ϵd(g), p8 belongs to the current segment and a
new segment does not need to be started.

Rule 3: If dlb > ϵd(g), p8 breaks the tolerance and a new segment
needs to be started.

Rule 4: If dlb ≤ ϵd(g) < dub, p8 cannot be determined using BQS.

To conveniently filter points, we set a state property f for each
point to indicate whether they need to be filtered. If the value of
f equals ‘1’, it means it needs to be filtered and if the value is
‘0’, it needs to remain in the trajectory segment. Therefore, when
the incoming point p8 satisfies rule 1 and rule 2, we set p8.f as
‘1’ to filter this point; otherwise, we keep p8 for further online
DPTS compression. After determining the point p8, we can continue



to process the rest of points. After processing all points in g, we
compress all points with f = ‘0’ using SP-theo. The optimized
onlineDPTS compression algorithm (called onlineDPTS+) is shown
in Algorithm 2. Comparedwith the online DPTS algorithm, the new
algorithm adds a filtering procedure before running compression
(see line 9 in Algorithm 2 and Algorithm 3). Therefore, we can run
the SP-theo algorithm with the time complexity of O(c × m2),
wherem≪ n.

Algorithm 2: The description of online DPTS+

1 Online DPTS+_Procedure(S, ϵt )/* Input: S is a
trajectory streaming data on one time
snapshot, and ϵt is the upper bound on
direction error tolerance. Output: S’ is
the compressed trajectory streaming data
on the time snapshot. */

2 Initialize a queue Q← {}
3 Initialize S’← {}
4 Initialize a fdr set F← {}
5 for each trajectory segment gi ∈ S; i++ do
6 Store all points in gi in Q
7 if Q.length > 2 then
8 Q← do_filterByBQS(Q, ϵt ) //see algorithm 3
9 Q← do_SP-theo(Q, F, ϵt ) //see algorithm 1

10 S’← Q
11 remove all points in Q but the last two points
12 end
13 end
14 return S’

Algorithm 3: Filtering using BQS
1 do_filterByBQS(Q, ϵt )
2 ϵd = 0.5 · tan(ϵt) · LD(Q ) /* transfer the direction

error to the position error using formula
(5) */

3 set a tiny buffer B that contains the first λ points in Q, i.e.,
Q[1:λ]

4 set the first λ - 1 points’ filtering property f as ’0’
5 set the first point in B as the start point s
6 set the last point in B as the new incoming point e
7 set i = λ and len = the length of Q
8 while i≤ len do
9 if d(s,e)≤ ϵd then // satisfy rule 1

10 Q[i].f = 1 and e→ B
11 else
12 Construct or maintain a BQS structure over the buffer

B
13 if dub ≤ ϵd(g) then // satisfy rule 2
14 Q[i].f = 1 and e→ B
15 else

// satisfy rule 3 or rule 4
16 Q[i-1].f = 0
17 s← Q[i-1] // Current segment stops and

new segment starts at the previous
point before e

18

19 end
20 end
21 end
22 Update Q to only keep points whose f property equals 0
23 return updated Q
Fig. 4. The parallel scheme for constructing graph.

4. The GPU-aided online DPTS+ method

To more efficiently compress trajectory streaming data using
online DPTS+, we focus on the solution for parallelizing our
proposed online DPTS+ using GPU. Because our proposed online
DPTS+ algorithm heavily depends on the SP-theo algorithm, we
propose a way to parallelize the SP-theo algorithm.

According to the description of the SP-theo algorithm in
Section 3.2, the graph construction (Step 1) and the shortest path
finding (Step 2) are dominant in terms of time costs. Therefore, a
parallel scheme is proposed to accelerate Step 1, and then we in-
troduce how to employ a GPU-aided BFS to improve the computing
performance of Step 2.

4.1. A parallel scheme on GPUs for graph construction

According to the above-mentioned descriptions about the
graph construction of SP-theo in Section 3.2, we can see that
the key point to parallelize graph construction is to parallelize
the computational procedure of O(n2) times of checking whether
ϵ(
−−→
Pi, Pj) < ϵt , with each check taking O(c) time with fdr(T [i, j]|ϵt).

Therefore, we propose a parallel scheme for Step 1 based on the
method of computing fdr(T [i, j]|ϵt) with the incremental property
in [13]. In [13], fdr(T [i, j]|ϵt) can be incrementally computed using
Eq. (3): fdr(T [i, j]|ϵt) = fdr(T [i, j − 1]|ϵt) ∩ fdr(

−−−−→
Pj−1, Pj) where

1 ≤ i < j ≤ n. So, after j−i rounds, fdr(T [i, j]|ϵt) can be computing
using the following equation:

fdr(T [i, j]|ϵt) = ∩i≤h<j fdr(
−−−−→
Ph, Ph+1|ϵt). (6)

Our parallel scheme is shown in Fig. 4. We compute all
fdr(T [i, j]|ϵt) to check whether ϵ(

−−→
Pi, Pj) < ϵt by executing the GPU

kernels in n − 1 rounds. In round 1, we compute all fdr(T [h, h +
1]|ϵt) in parallel where h ∈ [1, n − 1] and store these results in
GPU global memory for the following computing. In round r(2 ≤
r < n), we can parallelize the computational procedure for all
fdr(T [h, h + r]|ϵt) where h ∈ [1, n − r] based on Eq. (6) and all
fdr(T [h, h+1]|ϵt) stored in globalmemory. For example, in round2
we compute fdr(T [1, 3]|ϵt), fdr(T [2, 4]|ϵt), . . . , fdr(T [n−2, n]|ϵt)
in parallel. Of these, fdr(T [1, 3]|ϵt) can be computed using Eq. (6)
(i.e., fdr(T [1, 3]|ϵt) = fdr(T [1, 2]|ϵt) ∩ fdr(T [2, 3]|ϵt)).

For our parallel scheme, two aspects can be improved. The
first one is that as the value of r increases, the number of sets
that intersected in Eq. (6) also increases. Thus, we can parallelize
the procedure of Eq. (6) as well. For instance, for the n-1 round
in Fig. 4, fdr(T [1, n]|ϵt) = fdr(T [1, 2]|ϵt) ∩ fdr(T [2, 3]|ϵt) ∩
fdr(T [3, 4]|ϵt) . . . ∩ fdr(T [n− 1, n]|ϵt).



(a) The flowchart for optimizing the computation of fdr sets. (b) The effect of the optimization method.

Fig. 5. Illustrating the optimization of computing fdr sets.
We can optimize the computing procedure using well-known
GPU parallel reduction methods in [20]. The second aspect
is that we only store fdr sets computed in round 1 in the
GPU memory, bearing in mind that the GPU memory space is
very limited. Consequently, in our scheme, all fdr sets in other
rounds are computed based on the roundst fdr sets. This scheme
involves many repeated computations. For example, we compute
fdr(T [1, 4]|ϵt) and fdr(T [2, 5]|ϵt) in parallel in round 3 as the
following procedure:

fdr(T [1, 4]|ϵt) = fdr(T [1, 2]|ϵt) ∩ fdr(T [2, 3]|ϵt) ∩ fdr(T [3, 4]|ϵt).
fdr(T [2, 5]|ϵt) = fdr(T [2, 3]|ϵt) ∩ fdr(T [3, 4]|ϵt) ∩ fdr(T [4, 5]|ϵt).

In this procedure, the computation for fdr(T [2, 3]|ϵt) ∩
fdr(T [3, 4]|ϵt) is executed two times. To avoid this, we temporarily
store all fdr sets of the last round in GPU memory. Thus, we can
directly compute the fdr set of the current round based on the
fdr sets of the last round and the partial fdr sets of first found.
This method is illustrated in Fig. 5. Fig. 5(a) shows we attempt
to store the computation results of fdr sets for the last round in
GPUmemory to accelerate the computing procedure of the current
round. The additional space cost is that we need to keep an array S2
with a maximum size of |S1| − 1. Fig. 5(b) presents an example of
the optimized effect ofmymethod. In this example, we can employ
the computing results stored in GPUmemory that is fdr(T [1, 3]|ϵt)
and fdr(T [2, 4]|ϵt) in round 2 to accelerate the computations of
fdr(T [1, 4]|ϵt) and fdr(T [2, 5]|ϵt) in round 3.

4.2. The BFS implementation on GPUs

After constructing the graph with error tolerance threshold ϵt ,
Gϵt , SP-theo runs a BFS algorithm on Gϵt to find the shortest path
from p1 to pn. Therefore, we employ a fast BFS implementation on
GPUs (i.e., BFS-4K [21]) to accelerate this step.

TheBFS-4Kmethoduses the concept of frontier in [22] for paral-
lel visits in one graph. Given one BFS tree generated by BFS has root
s and contains all reachable vertices, the vertices in each level of the
BFS treemake up a frontier. A procedure called frontier propagation
is executed to form the BFS tree. The frontier propagation proce-
dure checks every neighbor of a frontier vertex to see whether it
has already been visited already. If not, the neighbor is added to
a new frontier. BFS-4K implements the frontier propagation using
two data structures, Fd and Fdnew. Fd represents the actual fron-
tier, which is read by the parallel threads to start the propagation
step. Fdnew is written by the threads to generate the frontier. Then,
Fdnew is filtered to guarantee the correctness of the BFS visit and is
swapped with Fd for the next iteration.

In our setting, we only need to find the shortest path from
p1 to pn on Gϵt using BFS-4K instead of computing all shortest
paths between any two vertices. Therefore, we start the BFS-4K
procedure from p1 and terminate the frontier propagation once Pn
is retrieved. We slightly modified the frontier propagation of BFS-
4K to find the shortest path, which is shown in Algorithm 4. As we
can see, the BFS-4K starts from pstart referring it as a root in the tree
(see line 2) and Fd is set by pstart (line 4). Then, multiple iterations
are run. Each iteration consists of two steps: propagation step
(lines 6–9) and filtering step (lines 10–16). In the propagation step,
the proposed techniques in [21] can be used to optimize this step,
including exclusive prefix-Sum, dynamic virtual warps, dynamic
parallelism, and edge-discover. In the filtering step, after filtering
Fdnew with the hash table method in [21], we check whether the
end point pstart is in the leaves of tree or not. If it is, we can
terminate the finding procedure. Otherwise, the tree grows by one
level and Fd is swapped by Fdnew for the next iteration.

Note that for Step 3 in the SP-theo solution generation, the final
compressed trajectory T ′ can be acquired from the tree using a
parallel tree traversal.

5. Performance evaluation

We have evaluated the performances of the proposed online
DPTS, online DPTS+, and the GPU-aided online DPTS+ against
trajectory data streaming using a cutting-edge NVIDIA GPU. These
experimentsmainly concern direction error, compression rate, and
compression time.

5.1. Experimental setup

The trajectory datasets used in this paper come from T-Drive
trajectories [23] and GeoLife trajectories [22]. T-Drive recorded the



(a) T-Driver dataset. (b) GeoLife dataset.

Fig. 6. The comparison of direction error with DPTS.
Table 1
Datasets.

Set name # of trajectories Total # of positions Average # of positions per trajectory Directional difference between two adjacent segments

T-Driver 10,359 17,740,902 1713 (0.657, 0.803)
GeoLife 17,621 24,876,978 1412 (0.364, 0.615)
Algorithm 4: Finding the shortest path using BFS-4K
1 FindingSP_Procedure(G, pstart , pend, tree) /* Input: G is

one graph for BFS-4K, pstart is the start
point, and pend is the end point for BFS.
Output: the tree is a BFS tree where pstart
is its root node and pend is located in its
leaf nodes. */

2 tree.root← pstart
3 tree.level++
4 Fd← tree.root
5 while true do

/* propagation step */
6 foreach each vector v ∈ Fd in parallel do
7 ns← finding Fd’s neighbors
8 Fdnew← ns
9 end

/* filtering step */
10 filtering Fdnew in parallel
11 fill updated Fdnew into tree’s leaves
12 if pend ∈ tree.leaves then
13 return tree
14 end
15 Fd← Fdnew
16 tree.level++
17 end

trajectories of 33,000 taxis over a period of threemonths in Beijing,
andGeoLife contains 17,621 trajectories fromdifferent GPS loggers
and GPS phones, with different sampling rates. The features of the
two datasets are shown in Table 1.

All experiments were executed on one computer equipped
with a Maxwell GPU (GTX TITAN X), and the configurations are
presented in Table 2.

5.2. Evaluating the online DPTS algorithm

In this section, we evaluate the direction error, compression
rate, and runtime of online DPTS. For comparison, we used the
offline DPTS method, that is SP-theo. We randomly selected
Table 2
Configurations of the computer.

Specifications of CPU platforms Computer

OS Ubuntu14.04
CPU i7-5820k (3.3 GHz, 6 cores)
Memory 32 GB DDR4

Specifications of GPU platforms GTX TITAN X

Architecture Maxwell
Memory 12 GB DDR5
Bandwidth Bi-directional bandwidth of 16 GB/s
CUDA SDK 7.0

some trajectories from two datasets. For each trajectory, SP-theo
processed the whole trajectory, while the online DPTS compressed
the set of trajectory segments.

5.2.1. Direction error
In this experiment, we randomly selected 10 trajectories from

T-Driver and GeoLife and tuned the error tolerance ϵt ranging from
0.2 to 1 to compare the average direction error between DPTS
and online DPTS. Each segment contains 200 points (the reason
for selecting 200 is introduced in the following experiments).
Fig. 6 shows that there is no difference in terms of direction error
between the DPTS and online DPTS for two datasets. This indicates
online DPTS can have the same direction tolerance as DPTS.

5.2.2. Compression rate
In this section, we investigate the compression rate of online

DPTS. The compression rate is measured by size ratio that is
defined in [13] and is equal to


T ′∈D′ |T

′
|

T∈D |T |
, where D is the set of

raw trajectories and D′ is the set of the corresponding compressed
trajectories. We first observed the effect of segment size on the
compression rate of our online DPTS, and then we compared the
compression rate of online DPTS against the one of SP-theo. In the
first experiment, we fixed the number of trajectory points at 5000
and the error tolerance ϵt at 1 to observe the size ratio of online
DPTS with different segment sizes ranging from 50, 100, 200, 400
to 800. The experimental results in Fig. 7 show that the size ratio of
online DPTS can keep a steady value when segment size is greater
than 200 in both datasets.



(a) T-Driver dataset. (b) GeoLife dataset.

Fig. 7. The effect of segment size on online DPTS.
(a) T-Driver dataset. (b) GeoLife dataset.

Fig. 8. The compression rate of online DPTS.
In the second experiment, the segment sizewas fixed at 200 and
the number of trajectory points was fixed at 5000. The segment
size was set to 200 because we observed that the compression
rate had no obvious change when the segment size ≥ 200 in the
previous experiment. We then compare the size ratio of online
DPTS against DPTS under different value of error tolerance from
0.2, 0.4, 0.6, 0.8 to 1. Fig. 8 shows that the size ratio of online DPTS
is slightly higher than the one of DPTS for both datasets. The reason
is that online DPTS compressesmultiple trajectory segments while
DPTS simplifies the whole trajectory, so online DPTS keeps a few
trajectory points that can be removed if compressing the whole
trajectory using DPTS. However, the difference between online
DPTS and DPTS in terms of size ratio is very slight.

5.2.3. Runtime
In this section,we observe the compression time of onlineDPTS.

We set the segment size at 200 (the reason is shown in the above
experiments in terms of compression rate). We also set the ϵt = 1
to observe the runtime of online DPTS and DPTS under different
trajectory sizes (ranging from 2000 to 10,000).

The experiment results in Fig. 9 shows that online DPTS is
faster than DPTS about 11% for the T-Driver dataset and 79% for
the GeoLife dataset. The great performance gain of online DPTS
compared to DPTS is because that the SP-theo algorithm in the
online DPTS can run on some small-size trajectory segments.
Meanwhile, the reasonwhy the gain for theGeoLife dataset ismuch
better than the T-Driver dataset is that the compression rate of the
T-Driver is much lower than the one in the experimental results in
Fig. 8. Therefore, both DPTS and online DPTS takemuch less time to
compress T-Driver trajectories thanGeoLife trajectories. Therefore,
the superiority of online DPTS over DPTS is not obvious for the T-
Driver dataset.

5.3. Evaluating the online DPTS+ algorithm

In this section, we evaluate the performance of proposed online
DPTS+ in terms of direction error, compression rate, and compres-
sion time against the online DPTS algorithm. For all experiments in
this section, we set the segment size = 200.

5.3.1. Direction error
In this experiment, we also randomly selected 10 trajectories

from T-Driver and GeoLife and tuned the error tolerance ϵt ranging
from 0.2 to 1 to compare the average direction error between
online DPTS and online DPTS+. Fig. 10 shows there is no difference
in terms of direction error between the online DPTS+ and online
DPTS for the two datasets. That indicates online DPTS+ has the
same direction tolerance as online DPTS.

5.3.2. Compression rate
In this section, we investigate the compression rate of online

DPTS+. The compression rate ismeasured by size ratio. The number
of trajectory points is fixed as 5000. We compare the size ratio of



(a) T-Driver dataset. (b) GeoLife dataset.

Fig. 9. The compression time of online DPTS.
(a) T-Driver dataset. (b) GeoLife dataset.

Fig. 10. The comparison of direction error with online DPTS.
online DPTS+ against online DPTS under different values of error
tolerance from 0.2, 0.4, 0.6, 0.8 to 1. According to the experimental
results in Fig. 11, online DPTS+ has the same compression rate
as the online DPTS for the two datasets. This proves The filtering
procedure in online DPTS+ has no influence on the compression
rate.

5.3.3. Runtime
In this section, we investigate the time efficiency of online

DPTS+ processing trajectories. Because the core part of online
DPTS+ lies in pruning the trajectories with BQS, we first observed
the pruning power of online DPTS+ using the measuring method
in [9]. The method uses a metric called pruning power, denoted
as PP, which is defined as 1 − Ncomputed

Ntotal , where Ncomputed is the
number of points needed to be computed with SP-theo and the
number of total points. We randomly selected 10 trajectories with
the fixed size = 10,000 points and changed the direction error
tolerance ϵt ranging from 0.2 to 1 to observe the average PP
values. As we can see in Fig. 12, the average pruning power of
online DPTS+ is 70.5% for T-Driver and 85.1% for GeoLife. The
reason the PP value for T-Driver is lower than that for GeoLife is
because that GeoLife trajectories are easier to compress than T-
Driver trajectories according to experiments about compressing
rate (see Figs. 8 and 11), so that online DPTS+ can prune more
points from GeoLife than T-Driver.

Another observation is that our pruning power is lower than the
one (90%) in [9]. The main reason for this is that the online DPTS+
algorithm only prunes the points complying with Rule 1 and Rule
2 (see lines 23–35 in Algorithm 2) to accelerate the following SP-
theo algorithm, while the method in [9] uses Rule 1, Rule 2, and
Rule 3 to run its online trajectory compression algorithm.

In the following experiment, we evaluate the runtime of online
DPTS+. We set the ϵt = 1 to observe the runtime of online DPTS+
and online DPTS under different trajectory sizes (ranging from
2000 to 10,000). Because the online-DPTS+ algorithm consists
of two parts, filtering and compression, the time overheads of
these two parts are measured individually. The experiment results
in Fig. 13 show that online DPTS+ outperforms online DPTS
by an average of 2.23 times for the T-Driver dataset and 3.95
times for the GeoLife dataset. The results indicate that online
DPTS+ can significantly reduce time consumption by employing
BQS structure to decrease the number of pairs of −−→pi, pj to check
whether ϵ(

−−→pi, pj) ≤ ϵt during the compression. Meanwhile,
the performance gain for GeoLife dataset is better than T-Driver
dataset because online DPTS+ can prune more points for GeoLife
than T-Driver shown in Fig. 12. Additionally, the filtering time of
online DPTS+ takes about 30.1% of thewhole time cost for T-Driver
and 13.6% for GeoLife.

5.4. GPU-aided online DPTS+ method evaluation

In this section, we observe the runtime of the GPU-based
online DPTS+ method when handing trajectory data. The SP-theo
algorithm is the most time consuming part in online DPTS+, and



(a) T-Driver dataset. (b) GeoLife dataset.

Fig. 11. The compression rate of online DPTS+ .
(a) T-Driver dataset. (b) GeoLife dataset.

Fig. 12. The pruning power of online DPTS+ .
(a) T-Driver dataset. (b) GeoLife dataset.

Fig. 13. The runtime of online DPTS+ .
the graph construction and shortest path finding dominate the
time costs in the SP-theo algorithm. Therefore, we evaluate the
time efficiency of the GPU-aided graph construction method and
the method of shortest path finding in the following experiments.
For convenience, we refer to graph construction and shortest path
finding in the SP-theo algorithm as GC and SPF. Thus, the GPU-
based graph construction and its advanced version are called G-GC
and G-GC+, respectively. The shortest path finding based on BFS-
4K is called G-SPF.

5.4.1. Evaluating the GPU-aided graph construction
In this experiment, we randomly selected 10 trajectories whose

lengths are more than 35K points from both the T-Drive and
GeoLife datasets. We replaced the graph construction in SP-theo



Fig. 14. The runtime of GPU-aided graph construction.

Fig. 15. The runtime of GPU-aided shortest path finding.

with the GPU-aided graph construction. We then observed the
average time consumption of GC and G-GC for handling 10 sub-
trajectories with various sizes (from 15K points to 35K points).
The error tolerance ϵt was set to 1. The experimental results
in Fig. 14 show that G-GC was 14.3 times faster than GC on
average. Furthermore, G-GC+ improved G-GC by about 2.2 times
on average.

5.4.2. Evaluating the shortest path finding based on BFS-4K
In this experiment, based on the graphs from the experimental

results in Fig. 14, we investigate the time consumption of G-SPF
compared with SPF. Fig. 15 shows that G-SPF outperforms SPF
about by 7.88 times on average. However, we also observed that
the performance gain is less than the experimental results in [21].
The reason is that online DPTS+ divided a trajectory into multiple
segments and also used the BQS structure to filter trajectories so
that the number of points in SPF stage is very small, which hinders
the GPU’s parallelism.

6. Conclusions and future work

This paper addresses the need to compress online trajectory
streaming data by preserving direction information. We converted
an offline DPTS algorithm into an online DPTS method and applied
a BQS data structure in an online PPTS method to optimize our
proposed online DPTS method, called online DPTS+. The proposed
online DPTS+ meets the need to quickly compress trajectory
streaming data. A parallel method for online DPTS+ has been
developed to ensure the performance of compressing trajectory
streaming data with the support of a contemporary Maxwell
GPU. The proposed approach provides a new tool for fast online
trajectory stream compression.

The experimental results show that (1) the online DPTS
outperforms offline DPTS with up to 79% less compression
time while maintaining a comparable compression error and
compression rate, (2) the compression time of online-DPTS+

algorithm is 3.95 times faster than that of online DPTS, and (3) the
GPU-aidedmethods can significantly reduce the time for the graph
construction and for the shortest path finding with a speedup of
31.4 and 7.88 (on average), respectively. For future work, we will
extend the compressed approach to process trajectories in the road
network and consider the streaming inconsistency issue.
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