1,164 research outputs found

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation

    Spherical acquisition trajectories for X-ray computed tomography with a robotic sample holder

    Full text link
    This work presents methods for the seamless execution of arbitrary spherical trajectories with a seven-degree-of-freedom robotic arm as a sample holder. The sample holder is integrated into an existing X-ray computed tomography setup. We optimized the path planning and robot control algorithms for the seamless execution of spherical trajectories. A precision-manufactured sample holder part is attached to the robotic arm for the calibration procedure. Different designs of this part are tested and compared to each other for optimal coverage of trajectories and reconstruction image quality. We present experimental results with the robotic sample holder where a sample measurement on a spherical trajectory achieves improved reconstruction quality compared to a conventional circular trajectory. Our results demonstrate the superiority of the discussed system as it outperforms single-axis systems by reaching nearly 82\% of all possible rotations. The proposed system is a step towards higher image reconstruction quality in flexible X-ray CT systems. It will enable reduced scan times and radiation dose exposure with task-specific trajectories in the future, as it can capture information from various sample angles

    Motion planning for cooperative manipulators folding flexible planar objects

    Full text link
    Abstract — Research on robotic manipulation has mostly avoided the grasping of highly deformable objects, although they account for a significant portion of everyday grasping tasks. In this paper we address the problem of using cooperative manipulators for folding tasks of cloth-like deformable objects, from a motion planning perspective. We demonstrate that complex deformable object models are unnecessary for robotic applications. Consequently, a simple object model is exploited to create a new algorithm capable of generating collision-free folding motions for two cooperating manipulators. The algorithm encompasses the essential properties of manipulator-independence, parameterized fold quality, and speed. Numerous experiments executed on a real and simulated dual-manipulator robotic torso demonstrates the method’s effectiveness. I
    • …
    corecore