910 research outputs found

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Task-space dynamic control of underwater robots

    Get PDF
    This thesis is concerned with the control aspects for underwater tasks performed by marine robots. The mathematical models of an underwater vehicle and an underwater vehicle with an onboard manipulator are discussed together with their associated properties. The task-space regulation problem for an underwater vehicle is addressed where the desired target is commonly specified as a point. A new control technique is proposed where the multiple targets are defined as sub-regions. A fuzzy technique is used to handle these multiple sub-region criteria effectively. Due to the unknown gravitational and buoyancy forces, an adaptive term is adopted in the proposed controller. An extension to a region boundary-based control law is then proposed for an underwater vehicle to illustrate the flexibility of the region reaching concept. In this novel controller, a desired target is defined as a boundary instead of a point or region. For a mapping of the uncertain restoring forces, a least-squares estimation algorithm and the inverse Jacobian matrix are utilised in the adaptive control law. To realise a new tracking control concept for a kinematically redundant robot, subregion tracking control schemes with a sub-tasks objective are developed for a UVMS. In this concept, the desired objective is specified as a moving sub-region instead of a trajectory. In addition, due to the system being kinematically redundant, the controller also enables the use of self-motion of the system to perform sub-tasks (drag minimisation, obstacle avoidance, manipulability and avoidance of mechanical joint limits)

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Investigation into the Dynamics and Control of an Underwater Vehicle-Manipulator System

    Get PDF
    This study addresses the detailed modeling and simulation of the dynamic coupling between an underwater vehicle and manipulator system. The dynamic coupling effects due to damping, restoring, and inertial effects of an underwater manipulator mounted on an autonomous underwater vehicle (AUV) are analyzed by considering the actuator and sensor characteristics. A model reference control (MRC) scheme is proposed for the underwater vehicle-manipulator system (UVMS). The effectiveness of the proposed control scheme is demonstrated using numerical simulations along with comparative study between conventional proportional-integral-derivative (PID) control. The robustness of the proposed control scheme is also illustrated in the presence of external disturbances and parameter uncertainties

    Hybrid state estimators for the control of remotely operated underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Ocean Engineer at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1988This paper explores the use of 'hybrid' state estimators to increase the accuracy and flexibility of acoustic position measurement systems used in the control of underwater vehicles. Two different approaches to extend the range of acoustic position measurement systems are explored. The first approach is the use of an inexpensive Strapdown Inertial Measurement System (SIMS) to augment the acoustic with inertial position information. This approach is based on the experience gained using an attitude and inertial measurement package fielded on the JASON JUNIOR Remotely Operated Vehicle (ROV). The second approach is the use of a mobile, platform-mounted, acoustic net in conjunction with a platform tracking system. This second investigation used the JASON ROV as the basis for the simulation work. As motivation, some of the theoretical and practical difficulties encountered when range is extended using an unaugmented system are explored. Simulation results are used to demonstrate the effects of these difficulties on position estimation accuracy and on the performance in closed loop control of the vehicle. Using measured sensor noise characteristics, a hybrid Kalman filter is developed for each approach to take the greatest advantage of the available information. Formulation of the Kalman filter is different for each case. In the second case, the geographic position of the ROV is the sum of the acoustic net's geographic position, measured at a different interval by an RF positioning system, and the position of the ROV relative to the net, as measured acoustically. Closed loop vehicle performance evaluations are made for representative noise levels and update rates with and without the augmentation discussed in the first approach. Finally, conclusions are drawn about the benefits and applications of the hybrid Kalman filter to the control of Remotely Operated Vehicles
    corecore