6,714 research outputs found

    Trajectory Description Conception for Industrial Robots

    Get PDF
    International audienceIn this paper we observe the difficulties one can face when using different MPLs (Motion Planning Library) in a single application, and propose a new conception and a language which goal is to solve these problems. The idea is to present an interface between robot programming instruments and MPLs. Our goal is to provide a powerful tool for developers of software approaches for programming industrial robots that would allow an easy combination of different MPLs in one application. In addition the proposed conception hides the inner structure of libraries and eliminates the need to investigate algorithms before applying. That would increase the speed and the quality of the newly developed software systems

    A Novel Approach for Simplification of Industrial Robot Dynamic Model Using Interval Method

    Get PDF
    This paper proposes a new approach to simplify the dynamic model of industrial robot by means of interval method. Due to strong nonlinearities, some components of robot dynamic model such as the inertia matrix and the vector of centrifugal, Coriolis and gravitational torques, are very complicated for real-time control of industrial robots. Thus, a simplification algorithm is presented in this study in order to reduce the computation time and memory occupation. More importantly, this simplification is suitable for arbitrary trajectories in whole robot workspace. Furthermore, the method devotes to finding negligible inertia parameters, which is useful for robot model identification. A simulation has been carried out on a test trajectory using a 6-DOF industrial robot model, and the results have shown good performance and effectiveness of this method.ANR COROUSS

    From a Competition for Self-Driving Miniature Cars to a Standardized Experimental Platform: Concept, Models, Architecture, and Evaluation

    Full text link
    Context: Competitions for self-driving cars facilitated the development and research in the domain of autonomous vehicles towards potential solutions for the future mobility. Objective: Miniature vehicles can bridge the gap between simulation-based evaluations of algorithms relying on simplified models, and those time-consuming vehicle tests on real-scale proving grounds. Method: This article combines findings from a systematic literature review, an in-depth analysis of results and technical concepts from contestants in a competition for self-driving miniature cars, and experiences of participating in the 2013 competition for self-driving cars. Results: A simulation-based development platform for real-scale vehicles has been adapted to support the development of a self-driving miniature car. Furthermore, a standardized platform was designed and realized to enable research and experiments in the context of future mobility solutions. Conclusion: A clear separation between algorithm conceptualization and validation in a model-based simulation environment enabled efficient and riskless experiments and validation. The design of a reusable, low-cost, and energy-efficient hardware architecture utilizing a standardized software/hardware interface enables experiments, which would otherwise require resources like a large real-scale test track.Comment: 17 pages, 19 figues, 2 table

    Towards a Characterisation of Assets and Knowledge Created in Technological Agreements Some Evidence from the Automobile-Robotics Sector

    Get PDF
    This paper tries to bring new insights on the dynamics of inter-firm by focusing on cognitive and organisational dimensions. We consider the knowledge bases created inside the agreement and the characteristics of such knowledge bases (such as tacitness, level of generality, degree of centralisation...). The nature of assets for supporting this creation is also essential for the redeployability of knowledge created. We began by a brief review of some problems encountered by transactions cost economics and present some case studies of agreements between firms in the automobile and robotics sector. After having presented a taxonomy of knowledge and assets involved in such agreements, we bring some new discussion on the exploration/exploitation's dilemma. We argue finally that our taxonomy may be fruitful for a better understanding of the dynamic of firm boudaries by trying to go deeper into the "black box" of agreements.Inter-firm relations, automobile industry, technological agreements

    Concept of modular flexure-based mechanisms for ultra-high precision robot design

    Get PDF
    This paper introduces a new concept of modular flexure-based mechanisms to design industrial ultra-high precision robots, which aims at significantly reducing both the complexity of their design and their development time. This modular concept can be considered as a robotic Lego, where a finite number of building bricks is used to quickly build a high-precision robot. The core of the concept is the transformation of a 3-D design problem into several 2-D ones, which are simpler and well-mastered. This paper will first briefly present the theoretical bases of this methodology and the requirements of both types of building bricks: the active and the passive bricks. The section dedicated to the design of the active bricks will detail the current research directions, mainly the maximisation of the strokes and the development of an actuation sub-brick. As for the passive bricks, some examples will be presented, and a discussion regarding the establishment of a mechanical solution catalogue will conclude the section. Last, this modular concept will be illustrated with a practical example, consisting in the design of a 5-degree of freedom ultra-high precision robot

    Remote Control of Mobile Robot using the Virtual Reality

    Get PDF
    In this paper we present the simulation and manipulation of  teleoperation system for remote control of mobile robot using the Virtual Reality (VR). The objective of this work is to allow the operator to control and supervise a unicycle type mobile robot. In this research we followed three ways: The use of articulated robotic mobile on the Web, the design of remote environment for the experimentation using the network for the mobile robot and the  architecture of control is proposed to facilitate the piloting of the robot. This work proposes a hardware and software architecture based on communication and information technologies to control the virtual robot to improve the control towards the remote robot. A path planning method is integrated to the remote control system. Results show the real possibilities offered by this manipulation, in order to follow a trajectory of the robot and to create applications with a distance access to facilities through networks like the Internet and wireless

    SPRING BASED ON FLAT PERMANENT MAGNETS: DESIGN, ANALYSIS AND USE IN VARIABLE STIFFNESS ACTUATOR

    Get PDF
    Modern robot applications benefit from including variable stiffness actuators (VSA) in the kinematic chain. In this paper, we focus on VSA utilizing a magnetic spring made of two coaxial rings divided into alternately magnetized sections. The torque generated between the rings is opposite to the angular deflection from equilibrium and its value increases as the deflection grows – within a specific range of angles that we call a stable range. Beyond the stable range, the spring exhibits negative stiffness what causes problems with prediction and control. In order to avoid it, it is convenient to operate within a narrower range of angles that we call a safe range. The magnetic springs proposed so far utilize few pairs of arc magnets, and their safe ranges are significantly smaller than the stable ones. In order to broaden the safe range, we propose a different design of the magnetic spring, which is composed of flat magnets, as well as a new arrangement of VSA (called ATTRACTOR) utilizing the proposed spring. Correctness and usability of the concept are verified in FEM analyses and experiments performed on constructed VSA, which led to formulating models of the magnetic spring. The results show that choosing flat magnets over arc ones enables shaping spring characteristics in a way that broadens the safe range. An additional benefit is lowered cost, and the main disadvantage is a reduced maximal torque that the spring is capable of transmitting. The whole VSA can be perceived as promising construction for further development, miniaturization and possible application in modern robotic mechanisms

    Generating whole body movements for dynamics anthropomorphic systems under constraints

    Get PDF
    Cette thèse étudie la question de la génération de mouvements corps-complet pour des systèmes anthropomorphes. Elle considère le problème de la modélisation et de la commande en abordant la question difficile de la génération de mouvements ressemblant à ceux de l'homme. En premier lieu, un modèle dynamique du robot humanoïde HRP-2 est élaboré à partir de l'algorithme récursif de Newton-Euler pour les vecteurs spatiaux. Un nouveau schéma de commande dynamique est ensuite développé, en utilisant une cascade de programmes quadratiques (QP) optimisant des fonctions coûts et calculant les couples de commande en satisfaisant des contraintes d'égalité et d'inégalité. La cascade de problèmes quadratiques est définie par une pile de tâches associée à un ordre de priorité. Nous proposons ensuite une formulation unifiée des contraintes de contacts planaires et nous montrons que la méthode proposée permet de prendre en compte plusieurs contacts non coplanaires et généralise la contrainte usuelle du ZMP dans le cas où seulement les pieds sont en contact avec le sol. Nous relions ensuite les algorithmes de génération de mouvement issus de la robotique aux outils de capture du mouvement humain en développant une méthode originale de génération de mouvement visant à imiter le mouvement humain. Cette méthode est basée sur le recalage des données capturées et l'édition du mouvement en utilisant le solveur hiérarchique précédemment introduit et la définition de tâches et de contraintes dynamiques. Cette méthode originale permet d'ajuster un mouvement humain capturé pour le reproduire fidèlement sur un humanoïde en respectant sa propre dynamique. Enfin, dans le but de simuler des mouvements qui ressemblent à ceux de l'homme, nous développons un modèle anthropomorphe ayant un nombre de degrés de liberté supérieur à celui du robot humanoïde HRP2. Le solveur générique est utilisé pour simuler le mouvement sur ce nouveau modèle. Une série de tâches est définie pour décrire un scénario joué par un humain. Nous montrons, par une simple analyse qualitative du mouvement, que la prise en compte du modèle dynamique permet d'accroitre naturellement le réalisme du mouvement.This thesis studies the question of whole body motion generation for anthropomorphic systems. Within this work, the problem of modeling and control is considered by addressing the difficult issue of generating human-like motion. First, a dynamic model of the humanoid robot HRP-2 is elaborated based on the recursive Newton-Euler algorithm for spatial vectors. A new dynamic control scheme is then developed adopting a cascade of quadratic programs (QP) optimizing the cost functions and computing the torque control while satisfying equality and inequality constraints. The cascade of the quadratic programs is defined by a stack of tasks associated to a priority order. Next, we propose a unified formulation of the planar contact constraints, and we demonstrate that the proposed method allows taking into account multiple non coplanar contacts and generalizes the common ZMP constraint when only the feet are in contact with the ground. Then, we link the algorithms of motion generation resulting from robotics to the human motion capture tools by developing an original method of motion generation aiming at the imitation of the human motion. This method is based on the reshaping of the captured data and the motion editing by using the hierarchical solver previously introduced and the definition of dynamic tasks and constraints. This original method allows adjusting a captured human motion in order to reliably reproduce it on a humanoid while respecting its own dynamics. Finally, in order to simulate movements resembling to those of humans, we develop an anthropomorphic model with higher number of degrees of freedom than the one of HRP-2. The generic solver is used to simulate motion on this new model. A sequence of tasks is defined to describe a scenario played by a human. By a simple qualitative analysis of motion, we demonstrate that taking into account the dynamics provides a natural way to generate human-like movements
    corecore