545 research outputs found

    Supervised Classification and Mathematical Optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data

    Supervised classification and mathematical optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data.Ministerio de Ciencia e InnovaciónJunta de Andalucí

    HawkEye: Advancing Robust Regression with Bounded, Smooth, and Insensitive Loss Function

    Full text link
    Support vector regression (SVR) has garnered significant popularity over the past two decades owing to its wide range of applications across various fields. Despite its versatility, SVR encounters challenges when confronted with outliers and noise, primarily due to the use of the ε\varepsilon-insensitive loss function. To address this limitation, SVR with bounded loss functions has emerged as an appealing alternative, offering enhanced generalization performance and robustness. Notably, recent developments focus on designing bounded loss functions with smooth characteristics, facilitating the adoption of gradient-based optimization algorithms. However, it's crucial to highlight that these bounded and smooth loss functions do not possess an insensitive zone. In this paper, we address the aforementioned constraints by introducing a novel symmetric loss function named the HawkEye loss function. It is worth noting that the HawkEye loss function stands out as the first loss function in SVR literature to be bounded, smooth, and simultaneously possess an insensitive zone. Leveraging this breakthrough, we integrate the HawkEye loss function into the least squares framework of SVR and yield a new fast and robust model termed HE-LSSVR. The optimization problem inherent to HE-LSSVR is addressed by harnessing the adaptive moment estimation (Adam) algorithm, known for its adaptive learning rate and efficacy in handling large-scale problems. To our knowledge, this is the first time Adam has been employed to solve an SVR problem. To empirically validate the proposed HE-LSSVR model, we evaluate it on UCI, synthetic, and time series datasets. The experimental outcomes unequivocally reveal the superiority of the HE-LSSVR model both in terms of its remarkable generalization performance and its efficiency in training time

    Heuristic approaches for support vector machines with the ramp loss

    Get PDF
    Recently, Support Vector Machines with the ramp loss (RLM) have attracted attention from the computational point of view. In this technical note, we propose two heuristics, the first one based on solving the continuous relaxation of a Mixed Integer Nonlinear formulation of the RLM and the second one based on the training of an SVM classifier on a reduced dataset identified by an integer linear problem. Our computational results illustrate the ability of our heuristics to handle datasets of much larger size than those previously addressed in the literature.Ministerio de Economía y CompetitividadJunta de AndalucíaEuropean Regional Development Fund

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    A sequential dual method for the structured ramp loss minimization

    Get PDF
    The paper presents a sequential dual method for the non-convex structured ramp loss minimization. The method uses the concave-convex procedure which transforms a non-convex problem iterativelly into a series of convex ones. The sequential minimal optimization is used to deal with the convex optimization by sequentially traversing through the data and optimizing parameters associated with the incrementally built set of active structures inside each of the training examples. The paper includes the results on two sequence labeling problems, shallow parsing and part-of-speech tagging, and also presents the results on artificial data when the method is exposed to outlayers. The comparison with a primal sub-gradient method with the structured ramp and hinge loss is also presented
    corecore