28,915 research outputs found

    Employment training method

    Get PDF
    У робочій навчальній програмі подано мету, зміст та завдання вивчення дисципліни "Трудове навчання з методикою"В рабочей учебной программе представлены цели, содержание и задачи изучения дисциплины "Трудовое обучение методике"In the work study program given purpose, content and objectives of the discipline "labor training method

    A Semiblind Two-Way Training Method for Discriminatory Channel Estimation in MIMO Systems

    Get PDF
    Discriminatory channel estimation (DCE) is a recently developed strategy to enlarge the performance difference between a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. Specifically, it makes use of properly designed training signals to degrade channel estimation at the UR which in turn limits the UR's eavesdropping capability during data transmission. In this paper, we propose a new two-way training scheme for DCE through exploiting a whitening-rotation (WR) based semiblind method. To characterize the performance of DCE, a closed-form expression of the normalized mean squared error (NMSE) of the channel estimation is derived for both the LR and the UR. Furthermore, the developed analytical results on NMSE are utilized to perform optimal power allocation between the training signal and artificial noise (AN). The advantages of our proposed DCE scheme are two folds: 1) compared to the existing DCE scheme based on the linear minimum mean square error (LMMSE) channel estimator, the proposed scheme adopts a semiblind approach and achieves better DCE performance; 2) the proposed scheme is robust against active eavesdropping with the pilot contamination attack, whereas the existing scheme fails under such an attack.Comment: accepted for publication in IEEE Transactions on Communication

    Lazy learning in radial basis neural networks: A way of achieving more accurate models

    Get PDF
    Radial Basis Neural Networks have been successfully used in a large number of applications having in its rapid convergence time one of its most important advantages. However, the level of generalization is usually poor and very dependent on the quality of the training data because some of the training patterns can be redundant or irrelevant. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be approximated. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domains an artificial regression problem and two time series prediction problems. Results have been compared to standard training method using the complete training data set and the new method shows better generalization abilities.Publicad
    corecore