3,454,509 research outputs found

    Lazy learning in radial basis neural networks: A way of achieving more accurate models

    Get PDF
    Radial Basis Neural Networks have been successfully used in a large number of applications having in its rapid convergence time one of its most important advantages. However, the level of generalization is usually poor and very dependent on the quality of the training data because some of the training patterns can be redundant or irrelevant. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be approximated. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domains an artificial regression problem and two time series prediction problems. Results have been compared to standard training method using the complete training data set and the new method shows better generalization abilities.Publicad

    Adversarially Trained Autoencoders for Parallel-Data-Free Voice Conversion

    Full text link
    We present a method for converting the voices between a set of speakers. Our method is based on training multiple autoencoder paths, where there is a single speaker-independent encoder and multiple speaker-dependent decoders. The autoencoders are trained with an addition of an adversarial loss which is provided by an auxiliary classifier in order to guide the output of the encoder to be speaker independent. The training of the model is unsupervised in the sense that it does not require collecting the same utterances from the speakers nor does it require time aligning over phonemes. Due to the use of a single encoder, our method can generalize to converting the voice of out-of-training speakers to speakers in the training dataset. We present subjective tests corroborating the performance of our method

    Minimally-Supervised Morphological Segmentation using Adaptor Grammars

    Get PDF
    This paper explores the use of Adaptor Grammars, a nonparametric Bayesian modelling framework, for minimally supervised morphological segmentation. We compare three training methods: unsupervised training, semi-supervised training, and a novel model selection method. In the model selection method, we train unsupervised Adaptor Grammars using an over-articulated metagrammar, then use a small labelled data set to select which potential morph boundaries identified by the metagrammar should be returned in the final output. We evaluate on five languages and show that semi-supervised training provides a boost over unsupervised training, while the model selection method yields the best average results over all languages and is competitive with state-of-the-art semi-supervised systems. Moreover, this method provides the potential to tune performance according to different evaluation metrics or downstream tasks.12 page(s
    corecore