5 research outputs found

    Interference Cancellation at the Relay for Multi-User Wireless Cooperative Networks

    Full text link
    We study multi-user transmission and detection schemes for a multi-access relay network (MARN) with linear constraints at all nodes. In a (J,Ja,Ra,M)(J, J_a, R_a, M) MARN, JJ sources, each equipped with JaJ_a antennas, communicate to one MM-antenna destination through one RaR_a-antenna relay. A new protocol called IC-Relay-TDMA is proposed which takes two phases. During the first phase, symbols of different sources are transmitted concurrently to the relay. At the relay, interference cancellation (IC) techniques, previously proposed for systems with direct transmission, are applied to decouple the information of different sources without decoding. During the second phase, symbols of different sources are forwarded to the destination in a time division multi-access (TDMA) fashion. At the destination, the maximum-likelihood (ML) decoding is performed source-by-source. The protocol of IC-Relay-TDMA requires the number of relay antennas no less than the number of sources, i.e., RaJR_a\ge J. Through outage analysis, the achievable diversity gain of the proposed scheme is shown to be min{Ja(RaJ+1),RaM}\min\{J_a(R_a-J+1),R_aM\}. When {\smallMJa(1J1Ra)M\le J_a\left(1-\frac{J-1}{R_a}\right)}, the proposed scheme achieves the maximum interference-free (int-free) diversity gain RaMR_aM. Since concurrent transmission is allowed during the first phase, compared to full TDMA transmission, the proposed scheme achieves the same diversity, but with a higher symbol rate.Comment: submitted to IEEE Transaction on Wireless Communicatio

    Enhancing diversity and multiplexing gains in multi-user wireless relay systems

    Get PDF
    The demand for higher transmission rates and better quality of service in modern wireless communications is endless. The use of multiple transmit or /and receive antennas has been considered as one of the most powerful approaches to facilitate high -speed and high -quality communications. However, in practical cellular systems, mobile terminals may not be able to support a multiple- antenna setup. Thus an emerging technique called cooperative diversity is under consideration to utilize the multi -hop relay concept to realize the advantages of multiple - antenna systems in multi -user single- antenna networks. Cooperative diversity has attracted much interest in recent years as a very promising direction for future wireless communication evolution.Due to the fact that in practice terminals cannot transmit and receive simultaneously (i.e. the half -duplex limitation), the diversity improvement brought by the standard cooperative diversity transmission protocols is in general accompanied by a multiplexing loss (equivalent to a reduction in transmission data rate in high signal -to -nose ratio (SNR)). The purpose of this thesis is to use advanced transmission protocols to provide both good diversity and multiplexing performance when using the practical repetition -coded decode - and -forward (DF) relaying strategy in uplink mobile -to -base station transmission of cellular systems.The task is fulfilled by relaxing the orthogonal channel allocation requirement of the standard protocols and by using two relays to take turns forwarding source information to destination. We start our analysis from an M- source two -relay one -destination network. Through diversity -multiplexing tradeoff (DMT) analysis, we prove that for an isolated -relay scenario and a strong -interference scenario, the considered approach effectively recovers the multiplexing loss induced by the standard protocols while still obtaining diversity improvement over direct source -destination transmission without considering relaying.In addition, since the optimal multiplexing gain of the considered system can be achieved by the above approach, we study further improving diversity performance for a two -source network. We analyze taking full advantage of the multiple- source structure, multiple -relay structure, and the capability of affording complex signal processing at the destination (base station). For all three cases, we prove that the diversity performance of the above approach can be enhanced without a significant loss of multiplexing performance or using complex coding strategies at relays. Since the good DMT performance is not affected by source -relay channel conditions, the protocols discussed in this thesis make relaying more beneficial

    Virtual-MIMO systems with compress-and-forward cooperation

    Get PDF
    Multiple-input multiple-output (MIMO) systems have recently emerged as one of the most significant wireless techniques, as they can greatly improve the channel capacity and link reliability of wireless communications. These benefits have encouraged extensive research on a virtual MIMO system where the transmitter has multiple antennas and each of the receivers has a single antenna. Single-antenna receivers can work together to form a virtual antenna array and reap some performance benefits of MIMO systems. The idea of receiver-side local cooperation is attractive for wireless networks since a wireless receiver may not have multiple antennas due to size and cost limitations. In this thesis we investigate a virtual-MIMO wireless system using the receiver-side cooperation with the compress-and-forward (CF) protocol. Firstly, to perform CF at the relay, we propose to use standard source coding techniques, based on the analysis of its expected rate bound and the tightness of the bound. We state upper bounds on the system error probabilities over block fading channels. With sufficient source coding rates, the cooperation of the receivers enables the virtual-MIMO system to achieve almost ideal MIMO performance. A comparison of ideal and non-ideal conference links within the receiver group is also investigated. Considering the short-range communication and using a channel-aware adaptive CF scheme, the impact of the non-ideal cooperation link is too slight to impair the system performance significantly. It is also evident that the practicality of CF cooperation will be greatly enhanced if a efficient source coding technique can be used at the relay. It is even more desirable that CF cooperation should not be unduly sensitive to carrier frequency offsets (CFOs). Thus this thesis then presents a practical study of these two issues. Codebook designs of the Voronoi VQ and the tree-structure vector quantization (TSVQ) to enable CF cooperation at the relay are firstly described. A comparison in terms of the codebook design complexity and encoding complexity is presented. It is shown that the TSVQ is much simpler to design and operate, and can achieve a favourable performance-complexity tradeoff. We then demonstrate that CFO can lead to significant performance degradation for the virtual MIMO system. To overcome it, it is proposed to maintain clock synchronization and jointly estimate the CFO between the relay and the destination. This approach is shown to provide a significant performance improvement. Finally, we extend the study to the minimum mean square error (MMSE) detection, as it has a lower complexity compared to maximum likelihood (ML) detection. A closed-form upper bound for the system error probability is derived, based on which we prove that the smallest singular value of the cooperative channel matrix determines the system error performance. Accordingly, an adaptive modulation and cooperation scheme is proposed, which uses the smallest singular value as the threshold strategy. Depending on the instantaneous channel conditions, the system could therefore adapt to choose a suitable modulation type for transmission and an appropriate quantization rate to perform CF cooperation. The adaptive modulation and cooperation scheme not only enables the system to achieve comparable performance to the case with fixed quantization rates, but also eliminates unnecessary complexity for quantization operations and conference link communication

    The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications
    corecore