212 research outputs found

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Scheduling M2M traffic over LTE uplink of a dense small cell network

    Get PDF
    We present an approach to schedule Long Term Evolution (LTE) uplink (UL) Machine-to-Machine (M2M) traffic in a densely deployed heterogeneous network, over the street lights of a big boulevard for smart city applications. The small cells operate with frequency reuse 1, and inter-cell interference (ICI) is a critical issue to manage. We consider a 3rd Generation Partnership Project (3GPP) compliant scenario, where single-carrier frequency-division multiple access (SC-FDMA) is selected as the multiple access scheme, which requires that all resource blocks (RBs) allocated to a single user have to be contiguous in the frequency within each time slot. This adjacency constraint limits the flexibility of the frequency-domain packet scheduling (FDPS) and inter-cell interference coordination (ICIC), when trying to maximize the scheduling objectives, and this makes the problem NP-hard. We aim to solve a multi-objective optimization problem, to maximize the overall throughput, maximize the radio resource usage and minimize the ICI. This can be modelled through a mixed-integer linear programming (MILP) and solved through a heuristic implementable in the standards. We propose two models. The first one allocates resources based on the three optimization criteria, while the second model is more compact and is demonstrated through numerical evaluation in CPLEX, to be equivalent in the complexity, while it performs better and executes faster. We present simulation results in a 3GPP compliant network simulator, implementing the overall protocol stack, which support the effectiveness of our algorithm, for different M2M applications, with respect to the state-of-the-art approaches

    5GAuRA. D3.3: RAN Analytics Mechanisms and Performance Benchmarking of Video, Time Critical, and Social Applications

    Get PDF
    5GAuRA deliverable D3.3.This is the final deliverable of Work Package 3 (WP3) of the 5GAuRA project, providing a report on the project’s developments on the topics of Radio Access Network (RAN) analytics and application performance benchmarking. The focus of this deliverable is to extend and deepen the methods and results provided in the 5GAuRA deliverable D3.2 in the context of specific use scenarios of video, time critical, and social applications. In this respect, four major topics of WP3 of 5GAuRA – namely edge-cloud enhanced RAN architecture, machine learning assisted Random Access Channel (RACH) approach, Multi-access Edge Computing (MEC) content caching, and active queue management – are put forward. Specifically, this document provides a detailed discussion on the service level agreement between tenant and service provider in the context of network slicing in Fifth Generation (5G) communication networks. Network slicing is considered as a key enabler to 5G communication system. Legacy telecommunication networks have been providing various services to all kinds of customers through a single network infrastructure. In contrast, by deploying network slicing, operators are now able to partition one network into individual slices, each with its own configuration and Quality of Service (QoS) requirements. There are many applications across industry that open new business opportunities with new business models. Every application instance requires an independent slice with its own network functions and features, whereby every single slice needs an individual Service Level Agreement (SLA). In D3.3, we propose a comprehensive end-to-end structure of SLA between the tenant and the service provider of sliced 5G network, which balances the interests of both sides. The proposed SLA defines reliability, availability, and performance of delivered telecommunication services in order to ensure that right information is delivered to the right destination at right time, safely and securely. We also discuss the metrics of slicebased network SLA such as throughput, penalty, cost, revenue, profit, and QoS related metrics, which are, in the view of 5GAuRA, critical features of the agreement.Peer ReviewedPostprint (published version

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as enhanced Mobile Broadband (eMBB), massive Machine Type Communications (mMTC) and Ultra-Reliable and Low Latency Communications (URLLC), the mMTC brings the unique technical challenge of supporting a huge number of MTC devices in cellular networks, which is the main focus of this paper. The related challenges include Quality of Service (QoS) provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and Narrowband IoT (NB-IoT). Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenario along with the recent advances towards enhancing its learning performance and convergence. Finally, we discuss some open research challenges and promising future research directions

    Prioritised Random Access Channel Protocols for Delay Critical M2M Communication over Cellular Networks

    Get PDF
    With the ever-increasing technological evolution, the current and future generation communication systems are geared towards accommodating Machine to Machine (M2M) communication as a necessary prerequisite for Internet of Things (IoT). Machine Type Communication (MTC) can sustain many promising applications through connecting a huge number of devices into one network. As current studies indicate, the number of devices is escalating at a high rate. Consequently, the network becomes congested because of its lower capacity, when the massive number of devices attempts simultaneous connection through the Random Access Channel (RACH). This results in RACH resource shortage, which can lead to high collision probability and massive access delay. Hence, it is critical to upgrade conventional Random Access (RA) techniques to support a massive number of Machine Type Communication (MTC) devices including Delay-Critical (DC) MTC. This thesis approaches to tackle this problem by modeling and optimising the access throughput and access delay performance of massive random access of M2M communications in Long-Term Evolution (LTE) networks. This thesis investigates the performance of different random access schemes in different scenarios. The study begins with the design and inspection of a group based 2-step Slotted-Aloha RACH (SA-RACH) scheme considering the coexistence of Human-to-Human (H2H) and M2M communication, the latter of which is categorised as: Delay-Critical user equipments (DC-UEs) and Non-Delay-Critical user equipments (NDC-UEs). Next, a novel RACH scheme termed the Priority-based Dynamic RACH (PD-RACH) model is proposed which utilises a coded preamble based collision probability model. Finally, being a key enabler of IoT, Machine Learning, i.e. a Q-learning based approach has been adopted, and a learning assisted Prioritised RACH scheme has been developed and investigated to prioritise a specific user group. In this work, the performance analysis of these novel RACH schemes show promising results compared to that of conventional RACH

    White Paper for Research Beyond 5G

    Get PDF
    The documents considers both research in the scope of evolutions of the 5G systems (for the period around 2025) and some alternative/longer term views (with later outcomes, or leading to substantial different design choices). This document reflects on four main system areas: fundamental theory and technology, radio and spectrum management; system design; and alternative concepts. The result of this exercise can be broken in two different strands: one focused in the evolution of technologies that are already ongoing development for 5G systems, but that will remain research areas in the future (with “more challenging” requirements and specifications); the other, highlighting technologies that are not really considered for deployment today, or that will be essential for addressing problems that are currently non-existing, but will become apparent when 5G systems begin their widespread deployment
    • …
    corecore