121 research outputs found

    Design and provisioning of WDM networks for traffic grooming

    Get PDF
    Wavelength Division Multiplexing (WDM) is the most viable technique for utilizing the enormous amounts of bandwidth inherently available in optical fibers. However, the bandwidth offered by a single wavelength in WDM networks is on the order of tens of Gigabits per second, while most of the applications\u27 bandwidth requirements are still subwavelength. Therefore, cost-effective design and provisioning of WDM networks require that traffic from different sessions share bandwidth of a single wavelength by employing electronic multiplexing at higher layers. This is known as traffic grooming. Optical networks supporting traffic grooming are usually designed in a way such that the cost of the higher layer equipment used to support a given traffic matrix is reduced. In this thesis, we propose a number of optimal and heuristic solutions for the design and provisioning of optical networks for traffic grooming with an objective of network cost reduction. In doing so, we address several practical issues. Specifically, we address the design and provisioning of WDM networks on unidirectional and bidirectional rings for arbitrary unicast traffic grooming, and on mesh topologies for arbitrary multipoint traffic grooming. In multipoint traffic grooming, we address both multicast and many-to-one traffic grooming problems. We provide a unified frame work for optimal and approximate network dimensioning and channel provisioning for the generic multicast traffic grooming problem, as well as some variants of the problem. For many-to-one traffic grooming we propose optimal as well as heuristic solutions. Optimal formulations which are inherently non-linear are mapped to an optimal linear formulation. In the heuristic solutions, we employ different problem specific search strategies to explore the solution space. We provide a number of experimental results to show the efficacy of our proposed techniques for the traffic grooming problem in WDM networks

    Traffic Grooming in Bidirectional WDM Ring Networks

    Get PDF
    We study the minimization of ADMs (Add-Drop Multiplexers) in optical WDM bidirectional rings considering symmetric shortest path routing and all-to-all unitary requests. We precisely formulate the problem in terms of graph decompositions, and state a general lower bound for all the values of the grooming factor CC and NN, the size of the ring. We first study exhaustively the cases C=1C=1, C=2C = 2, and C=3C=3, providing improved lower bounds, optimal constructions for several infinite families, as well as asymptotically optimal constructions and approximations. We then study the case C>3C>3, focusing specifically on the case C=k(k+1)/2C = k(k+1)/2 for some k1k \geq 1. We give optimal decompositions for several congruence classes of NN using the existence of some combinatorial designs. We conclude with a comparison of the cost functions in unidirectional and bidirectional WDM rings

    Drop cost and wavelength optimal two-period grooming with ratio 4

    Get PDF
    We study grooming for two-period optical networks, a variation of the traffic grooming problem for WDM ring networks introduced by Colbourn, Quattrocchi, and Syrotiuk. In the two-period grooming problem, during the first period of time, there is all-to-all uniform traffic among nn nodes, each request using 1/C1/C of the bandwidth; and during the second period, there is all-to-all uniform traffic only among a subset VV of vv nodes, each request now being allowed to use 1/C1/C' of the bandwidth, where C<CC' < C. We determine the minimum drop cost (minimum number of ADMs) for any n,vn,v and C=4 and C{1,2,3}C' \in \{1,2,3\}. To do this, we use tools of graph decompositions. Indeed the two-period grooming problem corresponds to minimizing the total number of vertices in a partition of the edges of the complete graph KnK_n into subgraphs, where each subgraph has at most CC edges and where furthermore it contains at most CC' edges of the complete graph on vv specified vertices. Subject to the condition that the two-period grooming has the least drop cost, the minimum number of wavelengths required is also determined in each case

    Traffic Grooming in Unidirectional WDM Ring Networks using Design Theory

    Get PDF
    International audienceWe address the problem of traffic grooming in WDM rings with all-to-all uniform unitary traffic. We want to minimize the total number of SONET add-drop multiplexers (ADMs) required. We show that this problem corresponds to a partition of the edges of the complete graph into subgraphs, where each subgraph has at most C edges (where C is the grooming ratio) and where the total number of vertices has to be minimized. Using tools of graph and design theory, we optimally solve the problem for practical values and infinite congruence classes of values for a given C , and thus improve and unify all the preceding results. We disprove a conjecture of [7] saying that the minimum number of ADMs cannot be achieved with the minimum number of wavelengths, and also another conjecture of [17]

    Traffic Grooming in Bidirectional WDM Ring Networks

    Get PDF
    We study the minimization of ADMs (Add-Drop Multiplexers) in optical WDM bidirectional rings considering symmetric shortest path routing and all-to-all unitary requests. We precisely formulate the problem in terms of graph decompositions, and state a general lower bound for all the values of the grooming factor CC and NN, the size of the ring. We first study exhaustively the cases C=1C=1, C=2C = 2, and C=3C=3, providing improved lower bounds, optimal constructions for several infinite families, as well as asymptotically optimal constructions and approximations. We then study the case C>3C>3, focusing specifically on the case C=k(k+1)/2C = k(k+1)/2 for some k1k \geq 1. We give optimal decompositions for several congruence classes of NN using the existence of some combinatorial designs. We conclude with a comparison of the cost functions in unidirectional and bidirectional WDM rings

    Traffic grooming in bidirectional WDM ring networks

    Get PDF
    International audienceWe study the minimization of ADMs (Add-Drop Multiplexers) in optical WDM bidirectional rings considering symmetric shortest path routing and all-to-all unitary requests. We precisely formulate the problem in terms of graph decompositions, and state a general lower bound for all the values of the grooming factor C and N, the size of the ring. We first study exhaustively the cases C = 1, C = 2, and C = 3, providing improved lower bounds, optimal constructions for several infinite families, as well as asymptotically optimal constructions and approximations. We then study the case C > 3, focusing specifically on the case C = k(k + 1)/2 for some k ≥ 1. We give optimal decompositions for several congruence classes of N using the existence of some combinatorial designs. We conclude with a comparison of the cost functions in unidirectional and bidirectional WDM rings

    Edge-partitioning regular graphs for ring traffic grooming with a priori placement od the ADMs

    Get PDF
    We study the following graph partitioning problem: Given two positive integers C and Δ, find the least integer M(C,Δ) such that the edges of any graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges and each vertex appears in at most M(C,Δ) subgraphs. This problem is naturally motivated by traffic grooming, which is a major issue in optical networks. Namely, we introduce a new pseudodynamic model of traffic grooming in unidirectional rings, in which the aim is to design a network able to support any request graph with a given bounded degree. We show that optimizing the equipment cost under this model is essentially equivalent to determining the parameter M(C, Δ). We establish the value of M(C, Δ) for almost all values of C and Δ, leaving open only the case where Δ ≥ 5 is odd, Δ (mod 2C) is between 3 and C − 1, C ≥ 4, and the request graph does not contain a perfect matching. For these open cases, we provide upper bounds that differ from the optimal value by at most one.Peer ReviewedPostprint (published version

    Smart Algorithms for Hierarchical Clustering in Optical Network

    Get PDF
    Network design process is a very important in order to balance between the investment in the network and the supervises offered to the network user, taking into consideration, both minimizing the network investment cost, on the other hand, maximizing the quality of service offered to the customers as well.Partitioning the network to smaller sub-networks called clusters is required during the design process inorder to ease studying the whole network and achieve the design process as a trade-off between several atrtributes such as quality of service, reliability,cost, and management. Under CANON, a large scale optical network is partitioned into a number of geographically limited areas taking into account many different criteria like administrative domains, topological characteristics, traffic patterns, legacy infrastructure etc. An important consideration is that each of these clusters is comprised of a group of nodes in geographical proximity. The clusters can coincide with administrative domains but there could be many cases where two or more clusters belong to the same administrative domain. Therefore, in the most general case the partitioning into specific clusters can be either a off-line or a on-line process. In this work only the off-line case is considered. In this Study, we look at the problem of designing efficient 2- level Hierarchical Optical Networks (HON), in the context of network costs optimization. 2-level HON paradigm only have local rings to connect disjoint sets of nodes and a global sub mesh to interconnect all the local rings. We present an Hierarchical algorithm that is based on two phases. We present results for scenarios containing a set of real optical topologies
    corecore