2,718 research outputs found

    Provision of metro ethernet services using a reconfigurable photonic access network

    Get PDF
    The paper proposes a design for traffic engineering to provide Ethernet services using an extended access network. Ethernet has remained the dominant technology for Local Area and Enterprise Networks, the use of Ethernet in metro networks has seen significant interest of late to provide for end to end Ethernet services to the user. The Broadband Photonic (BBP) access network is viewed as a quasi independent stack of EPONs in which geographically spread customer-VLANs (C-VLANs) can be implemented. The use of such a network for providing metro Ethernet like services in addition to traditional access services is presented

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services

    Get PDF
    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated

    Full-Service MAC Protocol for Metro-Reach GPONs

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”An advanced medium access control protocol is presented demonstrating dynamic bandwidth allocation for long-reach gigabit-capable passive optical networks (GPONs). The protocol enables the optical line terminal to overlap the idle time slots in each packet transmission cycle with a virtual polling cycle to increase the effective transmission bandwidth. Contrasting the new scheme with developed algorithms, network modeling has exhibited significant improvement in channel throughput, mean packet delay, and packet loss rate in the presence of class-of-service and service-level differentiation. In particular, the displayed 34% increase in the overall channel throughput and 30 times reduction in mean packet delay for service-level 1 and service-level 2 optical network units (ONUs) at accustomed 50% ONU load constitutes the highest extended-reach GPON performance reported up to date.Peer reviewe
    corecore