6,991 research outputs found

    Traffic Sign Detection and Recognition Based on Convolutional Neural Network

    Get PDF
    As autonomous vehicles are developing and maturing the technology to implement the domestic autonomous vehicles. The critical technological problem for self-driving vehicles is traffic sign detection and recognition. A traffic sign recognition system is essential for an intelligent transportation system. The digital image processing techniques for object recognition and extraction of features from visual objects is a huge process and include many conversions and pre-processing steps. A deep learning-based convolutional neural network (CNN) model is one of the suitable approach for traffic sign detection and recognition. This model has overcome significant shortcomings of traditional visual object detection approaches. This paper proposed a traffic sign identification and detection system. The proposed design and strategy are implemented using the Tensorflow framework in google colab environment. The experiment is applied on the publicly available traffic sign data sets. The defined deep convolution neural network based model experimental results achieved 94.52% and 80.85% precision and recall respectively. Improving the seep of recognition and identifying appropriate features of traffic sign objects are addressed using deep learning-based encoders and transformers. &nbsp

    Total Recall: Understanding Traffic Signs using Deep Hierarchical Convolutional Neural Networks

    Full text link
    Recognizing Traffic Signs using intelligent systems can drastically reduce the number of accidents happening world-wide. With the arrival of Self-driving cars it has become a staple challenge to solve the automatic recognition of Traffic and Hand-held signs in the major streets. Various machine learning techniques like Random Forest, SVM as well as deep learning models has been proposed for classifying traffic signs. Though they reach state-of-the-art performance on a particular data-set, but fall short of tackling multiple Traffic Sign Recognition benchmarks. In this paper, we propose a novel and one-for-all architecture that aces multiple benchmarks with better overall score than the state-of-the-art architectures. Our model is made of residual convolutional blocks with hierarchical dilated skip connections joined in steps. With this we score 99.33% Accuracy in German sign recognition benchmark and 99.17% Accuracy in Belgian traffic sign classification benchmark. Moreover, we propose a newly devised dilated residual learning representation technique which is very low in both memory and computational complexity

    Deep supervised learning using local errors

    Get PDF
    Error backpropagation is a highly effective mechanism for learning high-quality hierarchical features in deep networks. Updating the features or weights in one layer, however, requires waiting for the propagation of error signals from higher layers. Learning using delayed and non-local errors makes it hard to reconcile backpropagation with the learning mechanisms observed in biological neural networks as it requires the neurons to maintain a memory of the input long enough until the higher-layer errors arrive. In this paper, we propose an alternative learning mechanism where errors are generated locally in each layer using fixed, random auxiliary classifiers. Lower layers could thus be trained independently of higher layers and training could either proceed layer by layer, or simultaneously in all layers using local error information. We address biological plausibility concerns such as weight symmetry requirements and show that the proposed learning mechanism based on fixed, broad, and random tuning of each neuron to the classification categories outperforms the biologically-motivated feedback alignment learning technique on the MNIST, CIFAR10, and SVHN datasets, approaching the performance of standard backpropagation. Our approach highlights a potential biological mechanism for the supervised, or task-dependent, learning of feature hierarchies. In addition, we show that it is well suited for learning deep networks in custom hardware where it can drastically reduce memory traffic and data communication overheads

    Object Recognition from very few Training Examples for Enhancing Bicycle Maps

    Full text link
    In recent years, data-driven methods have shown great success for extracting information about the infrastructure in urban areas. These algorithms are usually trained on large datasets consisting of thousands or millions of labeled training examples. While large datasets have been published regarding cars, for cyclists very few labeled data is available although appearance, point of view, and positioning of even relevant objects differ. Unfortunately, labeling data is costly and requires a huge amount of work. In this paper, we thus address the problem of learning with very few labels. The aim is to recognize particular traffic signs in crowdsourced data to collect information which is of interest to cyclists. We propose a system for object recognition that is trained with only 15 examples per class on average. To achieve this, we combine the advantages of convolutional neural networks and random forests to learn a patch-wise classifier. In the next step, we map the random forest to a neural network and transform the classifier to a fully convolutional network. Thereby, the processing of full images is significantly accelerated and bounding boxes can be predicted. Finally, we integrate data of the Global Positioning System (GPS) to localize the predictions on the map. In comparison to Faster R-CNN and other networks for object recognition or algorithms for transfer learning, we considerably reduce the required amount of labeled data. We demonstrate good performance on the recognition of traffic signs for cyclists as well as their localization in maps.Comment: Submitted to IV 2018. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualization and Social Computing

    Fast traffic sign recognition using color segmentation and deep convolutional networks

    Get PDF
    The use of Computer Vision techniques for the automatic recognition of road signs is fundamental for the development of intelli- gent vehicles and advanced driver assistance systems. In this paper, we describe a procedure based on color segmentation, Histogram of Ori- ented Gradients (HOG), and Convolutional Neural Networks (CNN) for detecting and classifying road signs. Detection is speeded up by a pre- processing step to reduce the search space, while classication is carried out by using a Deep Learning technique. A quantitative evaluation of the proposed approach has been conducted on the well-known German Traf- c Sign data set and on the novel Data set of Italian Trac Signs (DITS), which is publicly available and contains challenging sequences captured in adverse weather conditions and in an urban scenario at night-time. Experimental results demonstrate the eectiveness of the proposed ap- proach in terms of both classication accuracy and computational speed
    • …
    corecore