8,065 research outputs found

    Incident detection using data from social media

    Get PDF
    This is an accepted manuscript of an article published by IEEE in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) on 15/03/2018, available online: https://ieeexplore.ieee.org/document/8317967/citations#citations The accepted version of the publication may differ from the final published version.© 2017 IEEE. Due to the rapid growth of population in the last 20 years, an increased number of instances of heavy recurrent traffic congestion has been observed in cities around the world. This rise in traffic has led to greater numbers of traffic incidents and subsequent growth of non-recurrent congestion. Existing incident detection techniques are limited to the use of sensors in the transportation network. In this paper, we analyze the potential of Twitter for supporting real-time incident detection in the United Kingdom (UK). We present a methodology for retrieving, processing, and classifying public tweets by combining Natural Language Processing (NLP) techniques with a Support Vector Machine algorithm (SVM) for text classification. Our approach can detect traffic related tweets with an accuracy of 88.27%.Published versio

    Introducing the STAMP method in road tunnel safety assessment

    Get PDF
    After the tremendous accidents in European road tunnels over the past decade, many risk assessment methods have been proposed worldwide, most of them based on Quantitative Risk Assessment (QRA). Although QRAs are helpful to address physical aspects and facilities of tunnels, current approaches in the road tunnel field have limitations to model organizational aspects, software behavior and the adaptation of the tunnel system over time. This paper reviews the aforementioned limitations and highlights the need to enhance the safety assessment process of these critical infrastructures with a complementary approach that links the organizational factors to the operational and technical issues, analyze software behavior and models the dynamics of the tunnel system. To achieve this objective, this paper examines the scope for introducing a safety assessment method which is based on the systems thinking paradigm and draws upon the STAMP model. The method proposed is demonstrated through a case study of a tunnel ventilation system and the results show that it has the potential to identify scenarios that encompass both the technical system and the organizational structure. However, since the method does not provide quantitative estimations of risk, it is recommended to be used as a complementary approach to the traditional risk assessments rather than as an alternative. (C) 2012 Elsevier Ltd. All rights reserved

    A data-centric weak supervised learning for highway traffic incident detection

    Full text link
    Using the data from loop detector sensors for near-real-time detection of traffic incidents in highways is crucial to averting major traffic congestion. While recent supervised machine learning methods offer solutions to incident detection by leveraging human-labeled incident data, the false alarm rate is often too high to be used in practice. Specifically, the inconsistency in the human labeling of the incidents significantly affects the performance of supervised learning models. To that end, we focus on a data-centric approach to improve the accuracy and reduce the false alarm rate of traffic incident detection on highways. We develop a weak supervised learning workflow to generate high-quality training labels for the incident data without the ground truth labels, and we use those generated labels in the supervised learning setup for final detection. This approach comprises three stages. First, we introduce a data preprocessing and curation pipeline that processes traffic sensor data to generate high-quality training data through leveraging labeling functions, which can be domain knowledge-related or simple heuristic rules. Second, we evaluate the training data generated by weak supervision using three supervised learning models -- random forest, k-nearest neighbors, and a support vector machine ensemble -- and long short-term memory classifiers. The results show that the accuracy of all of the models improves significantly after using the training data generated by weak supervision. Third, we develop an online real-time incident detection approach that leverages the model ensemble and the uncertainty quantification while detecting incidents. Overall, we show that our proposed weak supervised learning workflow achieves a high incident detection rate (0.90) and low false alarm rate (0.08)

    Incident duration time prediction using a supervised topic modeling method

    Get PDF
    Precisely predicting the duration time of an incident is one of the most prominent components to implement proactive management strategies for traffic congestions caused by an incident. This thesis presents a novel method to predict incident duration time in a timely manner by using an emerging supervised topic modeling method. Based on Natural Language Processing (NLP) techniques, this thesis performs semantic text analyses with text-based incident dataset to train the model. The model is trained with actual 1,466 incident records collected by Korea Expressway Corporation from 2016-2019 by applying a Labeled Latent Dirichlet Allocation(L-LDA) approach. For the training, this thesis divides the incident duration times into two groups: shorter than 2-hour and longer than 2-hour, based on the MUTCD incident management guideline. The model is tested with randomly selected incident records that have not been used for the training. The results demonstrate that the overall prediction accuracies are approximately 74% and 82% for the incidents shorter and longer than 2-hour, respectively

    Towards Robust Deep Reinforcement Learning for Traffic Signal Control: Demand Surges, Incidents and Sensor Failures

    Full text link
    Reinforcement learning (RL) constitutes a promising solution for alleviating the problem of traffic congestion. In particular, deep RL algorithms have been shown to produce adaptive traffic signal controllers that outperform conventional systems. However, in order to be reliable in highly dynamic urban areas, such controllers need to be robust with the respect to a series of exogenous sources of uncertainty. In this paper, we develop an open-source callback-based framework for promoting the flexible evaluation of different deep RL configurations under a traffic simulation environment. With this framework, we investigate how deep RL-based adaptive traffic controllers perform under different scenarios, namely under demand surges caused by special events, capacity reductions from incidents and sensor failures. We extract several key insights for the development of robust deep RL algorithms for traffic control and propose concrete designs to mitigate the impact of the considered exogenous uncertainties.Comment: 8 page
    • …
    corecore