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ABSTRACT 

INCIDENT DURATION TIME PREDICTION 
USING A SUPERVISED TOPIC MODELING METHOD 

by 
Jihyun Park 

 

Precisely predicting the duration time of an incident is one of the most prominent 

components to implement proactive management strategies for traffic congestions caused 

by an incident. This thesis presents a novel method to predict incident duration time in a 

timely manner by using an emerging supervised topic modeling method. Based on 

Natural Language Processing (NLP) techniques, this thesis performs semantic text 

analyses with text-based incident dataset to train the model. The model is trained with 

actual 1,466 incident records collected by Korea Expressway Corporation from 2016-

2019 by applying a Labeled Latent Dirichlet Allocation(L-LDA) approach. For the 

training, this thesis divides the incident duration times into two groups: shorter than 2-

hour and longer than 2-hour, based on the MUTCD incident management guideline. The 

model is tested with randomly selected incident records that have not been used for the 

training. The results demonstrate that the overall prediction accuracies are approximately 

74% and 82% for the incidents shorter and longer than 2-hour, respectively. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Traffic congestion can be classified into recurrent congestion and non-recurrent 

congestion. Repeatedly occurring in rush hours, the recurrent congestion is primarily 

caused by the inadequate base capacity of the roadway when demand is at its highest. 

Non-recurrent congestion is resulted from unexpected incidents such as collision, vehicle 

break-down, emergency lane closure, fire, etc. [1]. The impact of incident on traffic 

congestions is significant. Friedrich [2] showed that about 44% of traffic congestions in 

Germany is caused by incidents (Figure 1.1). He also suggested traffic demand, weather, 

and traffic incidents as three significant factors of traffic congestion, which affect the 

reliability of travel time. 

 

Figure 1.1 Cause of congestion in Germany. 

 In the United States, incidents account for approximately 25% of total congestions 

across the country, the second largest portion (Figure 1.2). Furthermore, as incidents 

create unexpected delays, it is a major source of frustration for road users [3].  



 

2 

 

Figure 1.2 Sources of congestion in the U.S.  

 The Korea Expressway Corp. analyzed 8,306 congestion cases that occurred on 

Highway No. 1(Kyungbu line) in South Korea (Figure 1.3). It shows that incident is the 

most influential factor except for traffic volume increasing. 

 

Figure 1.3 Reasons for congestion of the No. 1 highway in South Korea.  

 One of the most common congestion management strategies dealing with incident 

in the state-of-the-practice would be to provide road users with detour information to 

bypass incident scenes. Diverting upstream traffics to alternative routes, the detouring 

strategy enables not only drivers to take safer routes but also to improve the safety of 
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incident management crews by reducing traffics passing by the scene. Since an incident 

in nature is unpredictable, irregular, and unrepeated, however, incident-caused 

congestions often result in undesirable performances of traffic congestion management 

strategies.  

 FHWA [3] suggests that transportation agencies need to estimate the precise 

duration time of an incident to provide accurate information to road users to improve the 

effectiveness of traffic congestion management. The duration time of an incident consists 

of the following three elements, as depicted in Figure 1.4 [4]: 1) detection time; 2) 

response time; and 3) clearance time. It is noted that recovery time in Figure 1 is not 

included as a part of incident duration time (IDT) by definition. The detection time is the 

time gap between the incident occurrence and the moment of incident verification by 

Traffic Management Center (TMC). The response time is from the verification time to 

the arrival time of incident dispatching units (e.g., SSP, Ambulance) at the incident 

location. The clearance time is the amount of time spent by the incident dispatching team 

to clean up the incident on site.  
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Figure 1.4 Composition of incident duration. 

 With recent drastic advances in personal mobile device technologies, social 

networking service (SNS), and traffic surveillance infrastructures, the information of an 

incident can be reported to TMC in near real-time, which enables TMC operators to 

rapidly react to the incident. Along with the incident information at which it is reported, 

if the TMC operators could previse the IDT, their efforts to mitigate the impacts of the 

incident would become more productive. In that sense, timely and precise prediction of 

IDT is essential to enable congestion mitigation strategies to be more accurate and 

reliable.  

 
1.2 Problem Statements 

Yet, precisely predicting IDT is a nontrivial task, especially when it is needed to be done 

instantly. While numerous relevant efforts to forecast IDT have been undertaken for the 

past decades, only a few of them gained noticeable attentions. Traditionally, IDT 

prediction models have relied on numerical dataset quantified from incident reports 

which verbally describe incident situations. In general, an incident report contains 

information combined by numerous words that vividly explains the incident. However, 

during the quantifying process to generate numerical dataset, some words in the report 

can be omitted, adjusted, over- or understated, and/or even garbled to be fitted with a 

given data format designed for numerical data type. Smith and Smith [5] addressed that 

the performance of IDT prediction is heavily affected by both the quality (e.g., data 

structure consistency, information omission) and the quantity (e.g., sample size, sample 

imbalance) of the data. Unrecorded or omitted information in the incident data are also of 

critical factor adversely affecting the performance [6]. In addition, inconsistency in data 
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format across agencies who are responsible for collecting, archiving, and managing 

incident data worsens the performance of incident duration prediction models.  

 Specifically, duration data has unique features that the longer the duration time, 

the smaller the number of accident cases. Figure 1.5 shows that the data distribution of 

the incident duration has a right-skewed shape [5]. Due to the characteristics of left-

biased data, the results of many studies show high accuracy in the short duration section 

where a large number of data exist, but a high error rate in the long duration section 

where the number of data is small [5, 16, 18, 19, 20]. 

 

Figure 1.5 Example of distribution of incident dataset.  

Source: Smith, K., and Smith, B. 2001. Forecasting the Clearance Time of Freeway Accidents. Center for 
Transportation Studies, University of Virginia 
 
 As an aspect of the practical implementation of the model, duration time should 

be supported to the operator in TMC who is responsible for impact mitigation in the early 

stage of incident. To satisfy this assumption, Input data that can collect on time will be 

utilized from the incident report. Some research suggested that the reaction of incident is 

a critical contributing factor to estimation, for example, police officer arriving time. [6] 

Though It is a critical factor to estimate, does not efficient for the operator who decides 
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incident management plan as that information cannot reach in the initial stage of incident.  

1.3 Motivation 

By using text data, it is possible to overcome the limitations of numerical data. Numerical 

data has a disadvantage that the case cannot be used for analysis when the missing data 

occur. Since text analysis focuses on hidden meaning in documents, it is possible to 

overcome this shortcoming. It is also advantageous for long-duration time analysis, 

which has small incident cases. Incidents with complex and various factors combined 

contain more information in the incident report because the text description increases. 

Therefore, the text analysis method is more effective in terms of the use of traffic incident 

data.  

 Recently, machine learning techniques for text analysis has dramatically 

improved. Text mining, the process of deriving high-quality information from 

documents, is being used in various fields. Due to the increase in computer and software 

power, it is possible to analyze a large amount of data in a limited time to extract topics 

[7]. Recently, NLP-related research efforts using deep learning have been steadily 

increased [8]. The topic modeling is a part of Natural Language Processing (NLP) 

techniques which is widely used in computer science nowadays to retrieve topics in the 

documents. Applying this new technique to incident duration prediction may allow 

accuracy improvement. 

 The amount of text data that can be accessed and utilized has increased. In many 

transportation agencies, accident reports containing a brief summary stored in paper form 

in the past changed to electric data. Various analyzes and studies are being conducted 

using text data in these incident reports [35.36.37]. In addition, there is research that 
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conducted data analysis using text information updated in the timestamp [38]. The Korea 

Expressway Corporation has operated the OneClick system that updates real-time text 

data of incidents since 2016. The data accumulated over three years is expected to 

facilitate text analysis. 

1.4 Goal and Objectives 

The primary goal of this thesis is to develop an accurate incident duration time estimation 

model that enable TMC's operators to decide to implement traffic detour in an early stage 

of the incident. The operator’s quick decision is efficient for traffic management by 

mitigating congestion and preventing secondary accidents. To this end, the following 

objectives are established: 

 To apply suitable machine learning techniques for text analysis to retrieve the 

hidden meaning of the serious incident report data. 

 To develop an accurate estimation model that is helpful for the operator’s 

decision. 

 To develop real-time based model by using initial data which depict incident 

situation and circumstance. 

 This thesis presents a novel model for the prediction of incident duration time by 

employing an emerging supervised topic modeling (STM) method based on cutting-edge 

Natural Language Processing (NLP) techniques. Dealing with the huddles addressed in 

problem statements, the developed model performs semantic text analysis using actual 

incident records to prevent any potential information loss which might provide critical 

clues for IDT predictions. As an STM method, this thesis adopts Labeled Latent Dirichlet 

Allocation (L-LDA) [9]. 
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1.5 Organization 

This thesis is organized as follows: Chapter 2 covers the literature review with respect to 

analytical and classification approach for IDT Prediction. Chapter 3 discusses the 

evaluation of topic modeling and their application with the machine learning approach. 

The dataset introduction and methodology applying Labelled LDA are included in 

Chapter 4. Chapter 5 discusses the results in detail obtained from the analysis, and 

Chapter 6 provides concluding remarks for the future research study. 

 



 

9 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Regression Approach for IDT Prediction 

In the 1990s, estimating IDT gained an attraction with the introduction of ITS 

technologies. Khattak et al. [10] stated that the advanced traffic information system has 

great potentials in automatic incident detection and IDT prediction. The authors presented 

a duration time prediction method based on a linear regression modeling approach. The 

variables in the model are as follows; 1) incident characteristics (incident type, vehicle 

type, injuries and fatalities), 2) response and operational factors (number of rescue 

vehicles, other agencies assistance, usage of heavy wrecker), 3) environment 

conditions(weather, visibility), 4) location characteristics, 5) seasonal factors, 6) traffic 

flow, etc. In order to use reaction variables, this research divided duration time every 5 

minutes from 10 to 30 minutes and develop regression models for every truncation. Using 

the model, the author revealed that the IDT becomes longer if 1) the response time is 

longer, 2) the incident information is not disseminated, 3) there are severe injuries, 4) 

trucks with heavy loading are involved,  5) state property is damaged, and 6) the weather 

is not normal. It is a meaningful trial that the time sequential prediction model was 

developed considering the factors that were added as time goes by for duration prediction 

after an incident occurrence. 

 Peeta et al. [11] developed multiple linear regression models for IDT prediction 

by using 22,737 incident cases assisted by freeway service patrol in Indiana state from 

July 1, 1996. to October 28, 1998. The prediction model was designed in part of the 

development of the driver response model under traffic information. The estimation was 
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conducted for two types of incidents of road debris (1,176 cases) and 

collisions(835cases). The disablement type which a portion of 91% of the incident are not 

considered a prediction model. The independent variables are classified into four 

categories: severity (e.g., number of involved vehicles, fatality), location (e.g., ramp, 

mainline, merging/diverging), traffic condition level, environmental conditions 

(illumination, temperature, visibility). They found that the number of vehicles has the 

most critical impact on IDT, and the severity and environmental conditions also appear 

statistically significant. However, the overall performance of the models appears 

inadequate as two models' coefficients of determination (R2) are as low as 0.234 and 

0.362, respectively.  

 Chung et al. [12] applied Log-logistic Accelerated Failure Time (LAFT) model to 

estimate IDT. LAFT is a kind of method of parametric survival analysis. Survival 

analysis is a technique that analyzes the occurrence of events by tracking from starting 

time to end time. It is commonly used in industrial engineering, social science, and 

medical treatment. In this research, the LAFT was applied to predict IDT with 2,940 

incident cases collected by Korea Expressway Corp. in South Korea. The authors 

discovered that the followings give negative effects to incident duration time; Large 

truck, trailer, taxies, damage rate over 33%, fatalities, injured person, work zone area, 

number of vehicles, night time, and so on. Factors such as low damage rate, incident in 

shoulder location, overturned vehicle, incident reported by freeway service patrol are 

associated with short duration time. The result shows every variables’ estimated time 

ratio and percentage changes, which can determine positive and negative factors for 

incident duration time.   
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 Li, R. [13] also applied Accelerated Failure Time (AFT) model using 2,496 

incident cases collected in the metropolitan area of Beijing, China, in 2008. In the thesis, 

duration time is estimated three divided stages: 1) preparation, 2) travel, 3) clearance. The 

models are developed in each stage to improve the accuracy of prediction by using AFT 

hazard-based model. The result also suggested critical factors for longer and shorter 

duration time. For example, in the preparation time stage, while summer and autumn 

seasons are factors of extending duration time, the winter season impacts reducing 

duration time. This research revealed many different variables are affecting incident 

duration time for each stage. However, the prediction model shows low prediction 

accuracy in extremely short or long incident durations (high MAPE in 1~15min and over 

120min section).  

 Zong et al. [14] developed a hybrid model combining an ordered Probit model 

and an AFT model to predict IDT by using police-reported 3,914 incident records of Jilin 

province, China, in 2010. Severity prediction model by ordered Probit model estimates 

the number of fatalities, injuries, and property damage, and better prediction accuracy 

compared to the results of Support Vector Machines (SVM). AFT model applied 

estimation duration time accepts Weibull distribution for value prediction. A two-stage 

prediction (incident severity and then IDT) model achieved enhanced accuracy. This 

research reveals a meaningful conclusion that the factors of incident severity significantly 

affect the incident duration. In other words, accurate prediction of severity gives crucial 

information for estimation duration time. 

 Artificial Neural Network (ANN) also appeared as a popular data analysis method 

to solve complex problems with neurons between input and output data. Many 
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researchers have been trying to apply it to IDT prediction. Guan et al [15] utilized an 

ANN model with 830 cases in Guangzhou, China. Eight crucial input factors, such as 

number of trucks, rollover vehicle involvement, fatality damage involvement, etc., are 

determined by extracting a strong correlation. 660 cases are trained, and 170 cases are 

used in the validation of the model. Though its performance shows acceptable result as 

the correlation coefficient of prediction and real data is 0.8535, it is undesirable as its 

lower value comparing with it of decision tree model and regression model. Two reasons 

are presented as low correlation coefficient value: small incident cases (830 cases) and 

hidden input factors not mentioned in the incident report.  

 Wu et al. [16] applied Support Vector Machine (SVM) approach, which has 

strength in analyzing both nonlinear and high-dimensional pattern data to predict IDT by 

using 1,853 incident cases collected in Utrecht, Netherland. Incidents are divided into 

three types, Breakdown, Lost-load, and Accident, and prediction models of three cases 

were established. Basic parameters such as incident type, vehicle type, number of 

vehicles are used. Specifically, the Yes/No information about the necessity of police, fire 

brigade, ambulance, tow truck, repair service, road management, fluid to be clean, etc. 

are included as basic parameters. Bayesian Decision Method-Based Tree Algorithm is 

compared with the result of the newly predicted value in three divisions of duration time 

(10~30min, 30~60min, 60~90min). The reliability of predicted duration time less than 60 

minutes got high accuracy. However, the result of over 60 minutes is inferior.  

 

2.2 Classification Approach for IDT Prediction 

Various classification models based on big data analysis techniques are applied in 
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estimating IDT to improve prediction accuracy. The most common models are: 1) 

Decision Tree (DT), 2) K-Nearest Neighbor (KNN), 3) Support Vector Machines (SVM), 

4) Naive Bayesian Classifiers, and 5) Artificial Neural Networks (ANN) [17].  

 With the decision tree modeling approach, Chang et al. [18] attempted to improve 

the prediction accuracy of IDT based on the classification tree analysis. The strength of 

decision tree model is straightforward for users. The model consists of thirteen predictor 

variables (notification time, number of vehicles, truck involved, etc.) and three target 

variables (short, medium, long duration time), and twenty-seven cases are adopted to 

estimate. The authors employed the number of heavy vehicles and accident types (e.g., 

overturned, disabled vehicle, etc.) as the primary variables. Although this model produces 

a reasonable performance (i.e., 75% accuracy) overall, accuracies of mid and long 

duration appear as low as 17% and 11%, respectively. The researcher added some 

reasons of inaccuracy such as the imbalance of dataset, other indirect factors (upstream 

traffic, weather conditions), etc. 

 He et al. [19] developed a hybrid model integrating the quantile regression model 

and tree-structure model with 1,245 incident cases that occurred in the Bay area 

freeways, California. The two-step algorism is suggested. First, incidents are classified by 

incident type (collision, disabled vehicle, and collision), the presence of injury, number of 

vehicles, and so on, using the decision tree model. Then quantile regression model is 

applied to each final node. This model has merits simple interpretation and ease of 

managing covariates. Comparing to KNN and Classification and Regression Tree 

(CART), the authors showed the performance of their model with 84% of accuracy in the 

error range of 15minutes or less. The result also shows that incident characteristics (type, 
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injuries, block lanes, etc.) are critical factors, and location matters such as geometry and 

jurisdiction also affect duration time. 

 Yang et al. [20] applied Bayesian Network (BN) model with Florida DOT's 2,629 

incident cases collected from January 1, 2005. to October 31, 2006. In this research, 

duration time categorized three levels as FDOT’s criteria (under 30min as short level, 

30min~2hour as median level, over 2hour as long level). Missing data are substituted 

with the edge value for useful duration prediction, as BM model can accommodate 

incomplete data and predict. Detailed accuracy is calculated 81.8% in short level, 54.2% 

median level, 49.8% in long level. Compared with a Logistic model (71.7%) and a 

decision tree model (72.5%), BN model showed higher overall accuracy (72.6%). BM 

model has strength by showing straightforward and quickly implementing results 

suggesting the probability values of every variable, which can classify incidents for 

different duration classes.  

 Park et al. [21] developed a hybrid algorithm combining a Bayesian Neural 

Network (BNN) and a decision tree model using 13,987 Maryland State Highway 

Administration cases. This algorithm combined the merits of that BNN model can find 

out critical factors, and the decision tree model is a straightforward method to understand 

and interpret easily. Duration time was categorized into four groups, under 30min, 

30~60min, 60~90min, and over 90min. The result shows that the hybrid model got the 

lowest error rates (MAE 0.19, MAPE0.27, Proportion of underestimated values 10.2%) 

compared with Support Vector Machines, Back-propagation Neural Network, and 

Classification and Regression Tree models. This model could be helpful for operators not 

only to support higher accuracy than other models but to provide understandable 
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information of duration prediction. 

 Although a wide variety of modeling approaches have been proposed with various 

incident cases as reviewed in this section, it is still unsure to determine a model working 

best. Yu et al. [22] compared the prediction performance of ANN and SVM model. The 

dataset is composed of 235 cases that took place on Dalian-Shenyang freeway from 2012 

to 2014. The MAE, RMSE, MAPE are utilized to compare two model’s accuracy, and 

duration time is categorized into five groups. The authors demonstrated that SVM 

outperformed ANN in cases of short and medium IDT while ANN appears better for long 

duration incidents. 

 Examining the performance of five different modeling approaches for IDT 

prediction: 1)linear regression, 2) DT, 3) ANN, 4) SVM, and 5) KNN, Valenti et al. [23] 

showed that the accuracy of each model depends on the IDT. For example, the linear 

regression approach is the lowest error rate in case of IDT less than 0-30min while ANN 

shows the best performance for incidents with over 90min of IDT. Similarly, Hamad et 

al. [24] compared five models:  1) regression tree, 2) SVM, 3) ensemble tree, 4) gaussian 

process regression, and 5) ANN. The authors discovered that the worst model is a 

regression tree model, and the SVM model got the lowest error rates. This research also 

mentioned in the conclusion that there is no best model suitable for all cases.  
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CHAPTER 3 

TOPIC MODELING AND APPLICATION 

The topic modeling is a part of Natural Language Processing (NLP) techniques that can 

identify and classify the subject of a document composed of a combination of words. 

Each group of words represents the topics that the document stands for. In general, a 

document deals with multiple topics while multiple documents address one same topic. If 

documents address the same topic, it is very likely that similar words commonly exist in 

the documents. The topic modeling technique is a method of deducing topics by 

semantically clustering words using context-related cues in documents. Several relevant 

efforts in the diverse fields of engineering have been made to apply the topic modeling 

methods for medical area [25], analyzing social networks [26], and safety [28, 31, 33, 35, 

36, 37, 38].  

 Term frequency-inverse document frequency (TF-IDF) is a popular method to 

describe the topics of a document. This method compares essential words in a document 

and common words in overall documents [27]. This method is developed based on the 

assumption that the words frequently appeared in a document have a positive relationship 

with the topic. The frequent words in a document get a weight and the words which 

appear common across all documents are omitted by giving low weight.  = log( )                                               (3.1) 

 

Where, =  frequency of word i in document k N =  the number of documents in the collection 
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=  the number of documents where word i occurs  
 Goh et al. [28] applied TF-IDF topic modeling approaches to categorize 

construction accident with 16,323 construction incident reports occurring from 1983 to 

2013. The research used ‘title’ and ‘narrative’ in the reports as a dataset for applying TF-

IDF text mining techniques. Every incident narrative is tokenized to one word and two or 

three words combination. Through TF-IDF technology, the words which reflect incident 

characteristics are remained by removing generally used words in every document. The 

modified dataset is trained by matching 11 incident cases, and the classification is 

conducted using the following six machine learning algorithms and compared: 1) SVM, 

2) linear regression, 3) random forest, 4) KNN, 5) DT, and 6) NB. The authors 

discovered that overall SVM outperformed other algorithms. TF-IDF has a critical flaw 

in that it does not consider the meaning of the word at all [29]. This is because the 

structure of TF-IDF is designed to focus on the frequency of words.  

 Deerwester et al. [30] introduced Latent Semantic Indexing (LSI) using Singular 

Value Decomposition (SVD) for extracting topic words. LSI conceptually assumes that 

co-occurrence words have the same topics. Based on this assumption, LSI classify the 

documents based on the frequency of co-occurrence of similar words. Therefore, it is an 

advanced method than the TF-IDF method, which considers only the frequency of words. 

SVD is applied in this model which is a calculation method that simplifies numerous 

computational processes of the input matrix. The method consists of 3 steps: first, 

creating the input matrix (sentence - term matrix); second, applying the SVD to the 

matrix; and finally, selecting the sentences for the summary. 

 Robinson et al. [31] analyzed the narratives of the Aviation Safety Reporting 



 

18 

System (ASRS) using LSI analysis to find significant causes of an aviation accident. A 

total of 4,497 sentences were trained in labeling primary problems and contributing 

factors, and a 2,987 data set was used for cross-validation. For topic modeling, 400 words 

were retained after performing TF-IDF and SVD sequentially, and these words matched 

18 cause categories for training. As a result, this research got 44% of the accuracy for 

primary cause categorization. 

 Based on the LSI method, Hoffman, T. [32] proposed Probabilistic Latent 

Semantic Indexing (PLSI). While the LSI method is a model created by a document-word 

matrix based on the number of occurrences of a particular word in the documents, PLSI 

has a more comprehensive theoretical foundation accepting the probability of the 

occurrence of a specific word in a document. accepting the probability means that the 

document-term matrix is constructed not based on the number of times a specific term 

appears in the document but based on the probability of a specific word appearing in the 

document. 

 Zhao et al. [33] developed a fault diagnosis algorithm for vehicle on-board 

equipment (VOBE) for the high-speed train using the PLSI method. 1,148 fault cases are 

collected from 2011 to 2012 in Wuhan-Guangzhou high speed rail in China, in which 848 

cases are trained, and 300 cases are used for evaluation. The words in the VOBE reports 

classified 12 topics using PLIS method and matched fault reasons categorized 2 degrees 

(7 fault locations and 15 fault reasons). The Bayesian network model is adopted for 

training as its accuracy is better than K2 algorism, K-Nearest Neighbor, and Back 

Propagation Artificial Neural Network. The result based on comparing type of input data 

shows that topic modeling got higher accuracy than the raw feather, containing all the 
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words in the document, and the document frequency, which is one of the simplest word 

selection methods. 

 Latent Dirichlet Allocation (LDA) is a frequently used topic modeling algorithm 

developed by Blei et al. [34]. PLSI has the merit of a probabilistic model. It has, 

however,  inherent problems as follows. First, as the number of words increases, the 

parameters in the model are growing enormously. Second, while the model’s concept is 

the probability of word’s appearance, it is hard to choose in a new document. The LDA 

algorithm considers the concept of exchangeability among words in a document to reduce 

computation. The LDA also makes it possible that new terms are automatically identified 

and ranked by an advanced probabilistic model.  

 Several efforts have been made to apply LDA in the transportation safety research 

area using text in the reports of transportation facilities such as airports, railroads, and 

expressways.  

 Tanguy et al. [35] applied the LDA model to extract topics from the 167,350 

aviation safety reports in the Aviation Safety Reporting System (ASRS). Topics are set 

10, 50, 100, 200 for classifying, and labeled an incident reason by experts for each topic. 

The author found that the number of topics from 50 to 100 have high relevant to experts’ 

interpretation. This research also conducted identifying similar reports and plotting time 

series. The result could be utilized to find and investigate a series of specific incidents. 

The researcher suggested that incident signal detection machine learning algorithm using 

the aforementioned automatic reports classification technique. However, the result of the 

simulation shows unaffordable accuracy under 50%.   

 Brown [36] developed the prediction model to estimate the cost of extreme 
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incidents. LDA and Partial Least Squares (PLS) model are used for text mining with 

eleven years' 42,033 cases in the U.S. The result shows that input data combined with 

text inform a better understanding of classification. Specifically, it is discovered that the 

PLS method has a lower root mean squared error (RMSE) than LDA applied by both 

Random Forest and Gradient Boosting model. It is meaningful that cost estimating is 

conducted by matching words in LDA topics and words in documents.  

 Williams and Betak [37] compared LSI and LDA models with 12,447 railroad 

incident reports obtained from the Federal Railroad Administration’s equipment accident 

database from 2010 to 2015. The comparison result of identified topics shows that both 

models have different strengths in each topic. Both techniques have clearly classified as 

shoving, grade crossing accident, wheels, and hump yards. LSI was effective in 

identifying accidents related to track maintenance equipment, liquids releasing. On the 

other hand, LDA was effective in discovering topics having braking accidents, 

derailment, and hazardous materials. 

 Notably, Pereira et al. [38] predicted IDT using two year's Singapore incident 

data. The research focused on real-time estimation, as new information arrived in a traffic 

information center, and offline analysis. The estimation model is developed based on the 

LDA algorithm. Five prediction models (Linear Regression, Support Vector Machine, 

Artificial Neural Network, Decision Tree, and Radial Basis Neural Network) are used to 

investigate LDA’s performance. As comparison shows median error downed from 16.6 

min to 10.5min, the model with text analysis advanced accuracy compared without text 

analysis. 

 Many studies focused on the extraction or classification of keywords in the text 
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report using the LDA model. It has an excellent contribution for automation, which 

reduces a lot of time and effort dealing with it manually in the past. Topic modeling may 

contribute to increased utilization of text-based report data. Moreover, topic modeling 

combined prediction models like Brown [36], and Pereira et al. [38] could be an 

advanced study in terms of expanding the research area and practical utilization.  

 The main reason for LDA's popularity is its extended function. LDA is not only 

widely used, but it is also extensively modified. Therefore, many researchers changed to 

supervised learning models such as supervised LDA [39] and DiskLDA [40]. One of the 

supervised machine learning models for topic modeling is Labeled-LDA, developed by 

Daniel Ramage et al. [9] 
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CHAPTER 4 

METHODOLOGY 

4.1 Labeled Latent Dirichlet Allocation (L-LDA) 

As L-LDA is an extended concept of LDA, LDA should be introduced before dealing 

with L-LDA. LDA assumes that documents contain topics, and every topic contains 

words, denoted by k and , respectively. This assumption is conceived from the process 

of the document generation. For example, initiating a new document, a writer selects one 

topic, , which is proper for the document. After selecting a topic, the writer chooses one 

word appropriate for selected topic from multinomial distribution of . These actions are 

continuously repeated until the document is completed. In other words, the document is 

the group of words which is the combination of the probability that a word will exist in a 

particular topic, and the probability that a particular topic will exist in a document. 

Repetition for multiple documents in this way enables to find a set of words that 

 having a multinomial distribution. [34]  

 words. For this, the 

calculation is performed to obtain Z, the number of topics that a selected word belongs to. 

The characteristics of conjugation between Dirichlet distribution multinomial 

distribution  is used for calculation. Finally, are derived using the obtained 

Z. Through this process, the topic in the document can be identified by the distribution of 

words as shown in Figure 4.1. As of these merits utilizing relationship among topic, 

document and word, LDA is widely used for subject classification and calculating 

similarity between documents. 
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Where,  

M: Number of documents 

k: Number of topics 

N: Number of words in the document 

opic distribution in the document 

Word distribution for topic k 

Z: Number of the topic(topic distribution) which the word belongs 

: Observed word 

 
 
Figure 4.1 Graphical model of Latent Dirichlet Allocation (LDA). 
 
Source : Blei, D., Ng, A., and Jordan, M. 2003. Latent Dirichlet Allocation. Journal of Machine Learning 
Research 3 pp. 993-1022 
  

 L-LDA is a supervised learning method that utilizes the cause and effect 

relationships between words, documents, and topics [9]. As L-LDA is an extended 

concept of LDA, the basic process is the same as LDA. The main difference between the 

two models is the learning methods. LDA is an unsupervised method of clustering topics 

using word similarity. This means LDA is clustering model which automatically forms a 

group of similar words given the number of subjects determined by a user. Unlike LDA, 

L-LDA starts from known relationships between documents and topics provided by users 

as a training set. Under the assumption that documents and words become clues that 
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determine the topic, the model proceeds to learn that a set of documents and words 

labeled with the topics to match it. 

 

 
 

Where  M: Number of documents 

 k: Number of topics 

 N: Number of words in the document 

 opic distribution of the  

             The word distribution for topic k 

 Z: The number of the topic to which the word belongs 

             : Observed word 

             Topic presence/absence indicator 

             ) 

             : Labeling prior probability 

 

Figure 4.2 Graphical model of Labeled Latent Dirichlet Allocation (L-LDA). 
 

Source: Ramage, D., Hall, D., Nallapati, R., and Manning, C. 2009. Labeled LDA: A Supervised Topic 
Model for Credit Attribution in Multi-labeled Corpora, Proceedings of the 2009 Conference on Empirical 
Methods in Natural Language Processing 248–256 
 
 In Figure 4.2, an observed topic presence/absence indicator vector , is added in 
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LDA model. Comparing to Figure 4.1, the difference is , which restricts acceding all 

topics to the document by labeling the topics. LDA uses a Dirichlet distribution to model 

the subject distribution of a document. That is, while the proportion of occurrence of a 

topic, k, is the same in certain documents, L-LDA serves to limit the topics that will 

appear in certain documents. Thus, i -LDA is 1 (there is a 

possibility that all documents can evenly cover all topics), it will be the same model as 

the LDA.   represents the distribution of the topic within the 

the topic.  

 Using L-LDA for prediction of IDT has several unique benefits compared to other 

methods reviewed in the section of Literature Review. Firstly, traffic incident reports 

contain the clue for predicting the IDT. These words describe the incident situation, such 

as the environment, condition, and severity. The words describing a case creates a cause 

and effect relationship with the IDT. The supervised learning method is more effective 

than unsupervised learning, because the dataset is composed of the topics of duration 

time and related words of those topics. Secondly, the advantage of unsupervised learning 

is automatic clustering by grouping similar words. However, there are some 

disadvantages. The users have to find the characteristics of the topics with the results of 

the clustering. Furthermore, the result may not be matching with the topics that a user 

thinks before the analysis. L-LDA can solve these shortcomings by initially setting the 

number of topics that the user wants. Lastly, L-LDA has an advantage in that, when 

learning is well developed, even if new documents are as input data, it can analyze the 

material belongs to which topics. The LDA model is also known to be capable of 



 

26 

analyzing new documents, but only for small size. [38]  

4.2 Dataset 

4.2.1 Dataset Overview 

The Korea Expressway Corporation (KEC) manages all incidents taking place within its 

jurisdiction, covering approximately 4,195 km of expressway segments in South Korea. 

The dataset employed for this study includes a total of 2,220 expressway incident records 

collected by Korea Expressway Corporation (KEC) from 2016 to 2019. KEC manages 

incident in four levels, A,B,C, and D, by severity. D level incidents are not considered in 

this research as the severity is too low to impact IDT.  

 

 

Figure 4.3 OneClick system’s main interface. 
 

 Every incident text data is archived in OneClick, an incident database system and 

incident report of the KEC. OneClick is a real-time incident management system 
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developed in 2016. (Figure 4.3) The strength of this system is that the actual field 

conditions can be shared with all stakeholders in real time. A branch manager manually 

enters an incident information in real-time based on CCTVs in and around the incident 

scene and/or instantaneous radio communications with an incident response team. The 

information is shared in real-time with the local headquarter and TMC manager who is in 

charge of incident management. Personnel in charge of incident management uses this 

information to suggest countermeasures, to consider additional support, and to facilitate 

cooperation with other agencies.  

 

Figure 4.4 Example of real time incident report of OneClick system.  
 

 Figure 4.4 shows an example of an actual incident report used for this study. The 

incident report contains not only numerical data such as the number of vehicles, fatality 

but descriptions of the field with the text. In case of an incident, an initial report is 
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created for the incident based on observations by field investigators at the incident scene, 

such as first responders, police officers, and incident dispatching team. The initial report 

is then further enhanced with additional information that, if any, was revealed by other 

information sources (e.g., insurance investigations) after the occurrence of the incident by 

an incident manager in each branch office. Therefore, the final report contains more 

information than the initial report. Since the information missing in the initial report 

depends on the writer's tendency or reporting habits, information describing the situation 

in the final report was included in the analysis.  

 For accurate prediction, the data of the following incident were excluded from the 

dataset for analyzing. 

 1) Incidents with missing incident duration time: IDT is key data for this analysis.  

 2) Incidents mismatching OneClick and final report data: inaccurate information 

was removed as it can distort the analysis results. 

 3) Incidents with too short description: removed if less than 5 lines in OneClick as 

it is very likely that operators insincerely wrote the report or inputted it with only 

summarized text.  

 4) Incidents without description of the accident situation: since this study predicts 

IDT based on the incident situation, incidents without information of the situation were 

excluded. Some managers write the report focusing on the reactions of the response team, 

not the situation.  

 As a result, 1,466 incidents were adopted as dataset of this research. 

 

4.2.2 Dataset Description 
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Table 4.1 and Figure 4.5 show the description of input dataset. The average IDT is 

93.2minute, and the median value is 66.0min. The gap between median and mean values 

means IDT’s left-biased characteristics, as also shown in Figure 4.5. Almost half of the 

incident durations are within 60min (44.7%), and the third quartile of the incident cleared 

within 2 hours. Due to most of the samples less than 30 minutes excluded from the 

aforementioned data cleaning process, the number of data in this range is smaller than 30-

60 minutes. In practice, as IDT less than 30 minutes does not have a critical impact on 

traffic, it is reasonable to use this dataset as input data. 

 

Table 4.1 Dataset Description 

Mean Max Min 25% 50% 
(Median) 75% Standard 

deviation 

93.2 893.0 4.0 41.0 66.0 116.5 83.7 

Time 30min 60min 90min 120min 150min 180min 

Accumulated 
Percentile 11.6% 44.7% 64.4% 76.5% 83.8% 91.4% 
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Figure 4.5 Incident duration time distribution.  
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Figure 4.6 Relationships between incident duration times and variables. 
 Figure 4.6 demonstrates relationships between incident duration times and some 

selected variables such as the number of involved vehicles, heavy vehicles involved in 

incident, number of fatalities, etc. In the figure, we can find out variables are widely 

spread, so cannot easily find correlation with IDT. 

 

4.2.3 Data Preprocessing 

The LDA model applies to all languages. Therefore, it is unnecessary to translate the 

incident records to English. However, it is necessary to clearly state that the entire 

reporting process is manually conducted, prior to the OneClick system. Thus, it is likely 

that a report often includes inappropriate information while it omits critical piece of 

information that could be directly related to the actual incident. To handle this challenge, 

this thesis performed multi-step data preprocessing to sanitize raw dataset based on 

Natural Language Processing (NLP) techniques as follows.   

 
  - Step 1: Correction of misspelling and spacing. The misspelled words have 

been modified to minimize errors because they can cause a significant bias in topic 

modeling. Besides, the Korean language, unlike English, has special characteristics that 

combined two words are used as common words; thus, correcting spaces is also an 

essential process to transfer exact meaning.   

 - Step 2: Matching similar words. Different sentences and words are used 

depending on the person although they prepare the same report. If multiple words with 

the same meaning are used, topic modeling does not recognize a similar meaning. 
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Therefore, in order to increase the accuracy of the model, words with similar meanings 

have been unified. 

 - Step 3: Bag of Words. A simple way to analyze a document is to deal with them 

as a collection of fixed words or vocabulary so-called a 'Bag of Words (BoW)'. The BoW 

approach was proposed by Zhao et al [27]. This approach is used in case of languages 

(e.g., Korean, Chinese, and Japanese) that are not fully compatible yet with existing NLP 

techniques. In reality, not every single word in a KEC incident report is directly related to 

an incident: e.g., words like the names of first responders, the name of branch office, etc. 

As the purpose of this study is to predict IDT based on incident-related information, a 

total of 35 words were selected as BoW to keep all the time as shown below:  

 "Detach, Chamber, Load, Drop, Fall, Gas, Chemistry, All lane blocking, Cut, 

Stuck, Congestion, Paint, Green area, Slope, Spread, Chain, Collision, Turned over, 

Container, Damage, Iron, Leakage, Oil, Fuel, Broken, Outflow, Self-moving, Safety, 

Rotation, Work, Patrol, Reverse driving, Breaking, Courier, Low-speed” 

 - Step 4: Vehicle type unification. Depending on report generators, the same type 

of vehicles involved in incidents can be recorded in various ways. For example, a large 

cargo truck can be written in a report as '15ton cargo truck' or 'Scania truck' or '20ton 

dump truck'. The vehicle type was expressed in the raw dataset in various forms using the 

payload capacity, model, and make. Therefore, to maintain consistency, the type of 

vehicle is unified as shown below: 

 “Passenger car, Minibus, medium bus, Large bus, Small truck, Medium truck, 

Heavy cargo truck, Heavy trailer, Large tank lorry” 
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 - Step 5: Integrating numerical data. The KEC incident report contains common 

information to supplement the main text-based incident description as shown in Figure 4-

6. This type of supplementary information in the raw dataset is given in numerical form. 

In this study, this numerical information was also utilized by converting it into text form. 

For example, if the number of fatalities is 2, it was converted into the shape of 'NOF2' 

and used for text analysis. Below are datasets.   

 “Number of vehicles, Number of heavy vehicles, Location, Weather, Number of 

totally broken vehicle Number of half-broken vehicle, Number of fatalities, Number of 

pedestrian fatality, Number of override vehicle, Number of off-road vehicles, Number of 

turned vehicle, Number of fire-damaged vehicles” 

 

4.3 L-LDA Based Topic Modeling for Incident Duration Time Prediction 

4.3.1 Document Provision 

L-LDA training is conducted by modeling the probability of words included in the topic 

by specifying a topic for each document. Where, the document is the text data of an 

incident report, and the topic is the IDT. Each incident report going through the data 

preprocessing steps is used as a document for L-LDA. Similarly, the IDT recorded in 

each report is used as the topic for the corresponding document. Determining a topic 

from IDT is discussed in the next section in detail. Figure 4.7 depicts an example of a 

document used for L-LDA training. 
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Figure 4.7 The sample case of the incident report. 
4.3.2 Determination of Topic 

Unlike LDA, L-LDA has to initially determine a topic for each document to perform 

training as a supervised learning approach. To this end, topics need to be classified based 

on the range of IDTs in the raw dataset. In this study, the ranges of IDTs are determined 

by an MUTCD recommendation for a traffic rerouting strategy in traffic incident 

management.    

 Depending on the duration time, MUTCD categorizes incidents into three phases: 

minor, intermediate, and major. [41] A minor incident is defined that can be cleared 

within 30 minutes. An incident which the duration time is between 30 minutes and 2 

hours is grouped into an intermediate incident. The major incident is when the duration 

time exceeds 2 hours. Given the phases of incidents, MUTCD recommends different 

mitigation remedies. In case of a minor incident, MUTCD suggests a basic level of traffic 

management that does not include any queue warning, lane shifting, or detour messages. 

For an intermediate incident, the MUTCD-suggested mitigation strategies include the 

deployments of lane shifting signs with tapered lane closure and upstream warning 

devices to alert road users on the downstream queues. In case a major incident takes place, 

the provision of detour information to travelers is recommended. Thus, from the 
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perspective of incident management, duration time of 2-hour is a critical boundary to 

make a decision for implementing the detour strategy. In addition to MUTCD, Alternate 

Route Handbook (ARH) [42] also presents that several states in the U.S define a major 

incident that needs to implement detouring when the duration time is over 2-hour. Taking 

into consideration the criteria for detour appeared in both MUTCD and ARH, this study 

decided to use binary topics for L-LDA: 1) duration time shorter than 2-hour and 2) 

duration time longer than 2-hour.  

 

4.3.3 Model Calibration 

In order to implement the L-LDA model, it is necessary to determine the initial values of 

of topics and words, respectively. In addition, like other machine learning methods, L-

LDA training is implemented based on an iterative approach, which uses a stopping 

threshold, 

performance of L-LDA model is also affected by the stopping threshold. To achieve the 

 

for given incident reports that have not been used for training. In this thesis, a full 

factorial experimental design approach is employed to calibrate the L-LDA model. It is 

experiments. Table 4.2 summarizes the level of each experimental factor for the 

calibrations. This study employs a perplexity as a primary measure to determine the best 

combination of the calibration parameters. Perplexity is a numerical measure to examine 
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the prediction performance of a certain probability model for the observed value; thus, an 

L-LDA model with low perplexity indicates that it reflects the document well.  

 It is noted that each experiment was replicated 30 times to reflect random 

variabilities for the calibration. The calibration was conducted for approximately 62 

hours on a computer equipped with a 8th generation Intel Core-i7 CPU, 64GB of RAM 

and a Nvidia GTX 2080 GPU.   

 
Table 4.2 Level of Each Experimental Factor for the Calibrations 

Factor 
(Parameter) Level Cases Total 

Experiments 

 
0.1 ~ 2.0 at 0.1 interval;  
0.01 ~ 0.1 at 0.01interval; and 
0.001 ~ 0.01 at 0.002 interval    35 

840 (=35X24)  Fixed to  

 0.1 ~ 0.7 at 0.05 interval; and 
0.01 ~ 0.1 at 0.01 interval 24 
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CHAPTER 5 

RESULTS 

5.1 Analysis Results 

With the final model selected from the calibration process discussed in the previous 

section, a set of test documents that are randomly selected from the entire dataset is fed 

into the selected model to examine the performance of the model. Since L-LDA is based 

on a stochastic process, results from each test even with the same dataset are different. To 

handle this, this study performed a total of 30 replications with the same test documents.   

 Given a document, a trained L-LDA model generates probabilities, or confidence 

levels, as outputs to indicate how accurately the document fits each topic, including an 

undefined topic called “common topic”. The common topic is created by the L-LDA 

model to show a probability that the selected document cannot be classified into any of 

predefined topics. In general, a training dataset with significant noises, such as typos, 

unrelated words, broken sentences, would likely increase the probability of common 

topic. Figure 5.1 shows the probability distribution of IDTs less than 2-hour and larger 

than 2-hour which are denoted by IDT-Down and IDT-Up for short, respectively. Out of 

actual 4,131 IDT-Down cases obtained from 30-replication results in the test, Figure 5.1 

demonstrates that the developed L-LDA model chose 2,852 cases with 90% or above 

confidences (i.e., probability) to be IDT-Down. Similarly, 1,299 IDT-Up cases out of 

1,776 were predicted by the L-LDA model with at least 90% of confidence.  

 Figure 5.2 shows the cumulative distribution function of IDT-Down (top figure) 

and IDT-Up (bottom figure), respectively. Assuming the minimum confidence level for 

practically acceptable prediction performance to be 0.7 (i.e., 70% confidence), 
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approximately 77% and 81% of IDT-Down and IDT-Up cases are properly predicted by 

the L-LDA, respectively, as illustrated in Figure 5.2. 

 

 

 
 
Figure 5.1 Distribution of probabilities for IDT (top: IDT less than 2-hour; bottom: IDT 
greater than 2-hour). 
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Figure 5.2 Cumulative distribution function (top: IDT less than 2-hour; bottom: IDT 
greater than 2-hour). 
 
 As aforementioned, L-LDA estimates the probabilities of a document to be 

classified to each predefined topic as well as the common topic. The sum of the 
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probability for each topic is 1.0. As a result, each document has multiple probabilities 

estimated by L-LDA, as many as the number of predefined topics and the common topic.  

Figure 5.3 Example of match accuracies for each topic (top: IDT less than 2-hour; 
bottom: IDT greater than 2-hour). 
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 Figure 5.3 shows stacked bar charts as the examples of L-LDA results for each 

topic: IDT-Down and IDT-Up, respectively, which are randomly excerpted from the test 

documents to graphically illustrate how the L-LDA results look like. It must be noted that 

the test documents used in each chart do not necessarily mean the same document. Each 

of stacked bars in the charts consists of up to three elements in this study, which indicate 

IDT-Down in blue, IDT-Up in orange, and Common Topic in gray. Thus, a bar filled 

with a single color means that the document is predicted to be only one topic with 100% 

confidence. Obviously, if the predicted topic with 100% confidence is identical to the 

ground truth, then it means a perfect match, such as the document number 2 in the left 

case; otherwise, it indicates a perfect mismatch as shown in the document number 3 in 

the right case.  

    This study examined the matching accuracy of individual test document obtained 

from all 30 replications to utilize it as an additional performance indicator of the L-LDA-

based IDT prediction. Figure 5.4 displays the averages of matching accuracies for IDT-

Down and IDT-Up, which look similar to a confusion matrix. As clearly shown in the 

figure, the overall matching accuracy is 74% and 82% for the IDT-Down and IDT-Up 

cases, respectively. Blue color in IDT-Down means that 74% of estimates and actual 

values match (less than 2-hour).  Orange color in IDT-Down, means that for 24% of 

cases, cases of less than 2-hour were incorrectly matched with cases of greater than 2-

hour. For IDT-Up cases, Orange color means that 82% of estimates and actual values 

match (greater than 2-hour). However, Blue color means that 16% of cases are greater 

than 2-hour is true, but the model estimated as less than 2-hour cases. 
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It is of interest that the matching accuracy of IDT-Up case is higher than the IDT-

Down case by 8%. With in-depth investigations on dataset, it is discovered that the 

documents dealing with the IDT-Up cases more frequently contain unique and 

straightforward words that can improve the situational awareness of incident scene.   

Figure 5.4 Overall matching accuracy. 

5.2 Model Comparison

In this thesis, the L-LDA model was compared with three widely used models,  SVM, 

KNN, and the decision tree model. The results are provided in Table 5.1. Though the 

result shows overall accuracy is low compared to other models, it is discovered that L-

LDA shows outperforming prediction accuracy for over 2-hour duration case.
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Table 5.1 Performance Comparison  

 L-LDA Decision Tree KNN SVM 

Total Accuracy 76% 85% 83% 87% 

IDT-Down 74% 93% 94% 95% 

IDT-Up 82% 57% 45% 60% 

 

 This high accuracy is unique even compared to other studies. The result of the 

study of Yang et al. [20], and Chang et al. [18] are compared as summarized in Table 5.2 

for the over 2-hour duration case. 

 

Table 5.2 Performance Comparison of Other Research Result 

 L-LDA 
BN Model 

(Yang et al.) 
Decision Tree 
(Chang et al.) 

Total Accuracy 76% 72.6% 73.6% 

IDT-Down 
 

74% 
81.8% (0-30min) 96.7% (0-41min) 

54.2% (30-120min) 17.2% (42-118min) 

IDT-Up 82% 49.8% 11.4% (119min~) 

 

 From Table 5.2,  the findings are as follows. Firstly, the prediction accuracy with 

small cases is greatly improved. It is shown that the L-LDA model can overcome the 

limitation of the size of samples that many existing studies have. It is because the hidden 

meaning was grasped by utilizing the text data analysis. Secondly, the result has great 
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value in terms of the agency's perspectives. Agencies require high accuracy for accidents 

with long duration times. It is because providing accurate predictions for incidents with 

high accident severity is more meaningful in practice. Finally, although the overall 

accuracy is lower than that of the other models, the similar accuracy between the two 

groups (74%, 82%) means that it is likely to be developed through future model 

improvement. As mentioned earlier, the accident data has a left shifted shape. Therefore, 

there is a characteristic that the accuracy of the group with a large amount of data can be 

increased. Since the L-LDA model overcomes these characteristics, it is expected to 

develop an improved model in the future.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions  

This thesis presents a novel method to predict incident duration time using a topic 

modeling algorithm. As the text data of the incident report has an incomparable amount 

of information compared with the numerical dataset, the text analysis approach is useful 

for identifying potential factors affecting the duration times for various types of incidents. 

However, due to the difficulty of analyzing the text type of data, not enough research 

efforts have been conducted. Recently, drastic advances in topic modeling and machine 

learning technologies have made this possible. 

 The analysis is conducted with Korea Expressway Corporation's 1,466 incident 

records collected from 2016 to 2019. As the prediction should be done at the beginning of 

the incident, each incident record is preprocessed for describing only the initial situation 

of the incident. The analysis was performed using a Labeled LDA model, a supervised 

topic modeling technique. The result shows that the L-LDA method yields approximately 

74% accuracy in less than 2-hour duration cases and 82% in greater than 2-hour duration 

cases.  

 The findings of this study are as follows. Firstly, the topic modeling method has a 

great potential in incident duration time prediction as it utilizes descriptive information 

vividly conveying the actual incident scene. This method can contribute to improving the 

prediction accuracy by complementing the problems of existing numerical type datasets. 

Secondly, L-LDA is applied for the first time to conduct semantic text analyses of 

incident records that contain a straightforward cause-and-effect relationship between 
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words used in the records and the actual incident duration times. Unlike unsupervised 

topic modeling methods, the cause-and-effect relationships observed in the incident 

records can be used for training, thereby resulting in promising performances. In 

particular, the high accuracy in greater than 2-hour duration case with less samples 

proves that the proposed method is appropriate to overcome challenges encountered by 

the past studies that the accuracy decreases with small number of samples. [20, 24] 

 

6.2 Recommendations 

With recent drastic advances in machine learning technologies enabling to handle 

gigantic amounts of data, autonomous TMC operations become more feasible than ever. 

Yet rather the quantity of data, an attention should be paid to the quality of data. The 

followings should be considered to manage data quality. 

 Firstly, the model’s performance relies heavily on the quality of its input dataset; 

so does the supervised topic modeling method. Since incident reports are compiled by 

human operators, it is understandable that the reports contain erratic mistakes like typos, 

information omission. While it would be challenging to achieve in the near future, the 

performance of the incident duration model could be dramatically improved if the 

incident reporting procedure becomes more systematic and unified to reduce human 

errors.  

 Secondly, the classification of segmented incident duration time could be helpful 

to predict. As shown in Figure 1.4, HCM divided the duration time into five segments. 

However, Austroad [43] was subdivided into eight to strengthen TIM as shown in Figure 

6.1. If the activities of incident responses  can be clarified based on the duration time 
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segments, and each segment has accurate time, the prediction accuracy of IDT could be 

improved.  

 

 

Figure 6.1 Example of segmented incident duration time. 

Source : Traffic Incident Management : Best Practices. 2007. Austroads Publication No. AP–R304/07. 
Austroads Research Report: Sydney, Australia  
 

 Finally, from a practical point of view, the texts of the existing incident reports 

are focusing on the cause and reaction of an incident. It is crucial to establish a business 

rule for creating an incident report so that the incident report also includes overall 

situational awareness in and around the incident scene. It is worth noting that data 

retrieved from the OncClick system used in this study is a good example of real-time text 

data. Using this, real time duration time estimation is possible. Therefore, the creation of 

high-quality text data by an operator is a critical factor in the utilization. It is also 

possible through making clear criteria for creating documents and training operators who 

make reports. 

 In summary, agencies need substantial effort to generate and manage incident data 

for the sake of data quality. In the preprocessing process, it was identified that the value 
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of duration time was recorded incorrectly by the operator due to ambiguous criteria. 

Because these errors have a huge impact on predictions, agencies should pay great 

attention to data management. Recently, research for efficient response has attracted a lot 

of attention. Since the efforts of agencies such as Traffic Incident Management (TIM) 

lead to a reduction in incident duration time, Data management is more necessary in wide 

aspect.  

 

6.3 Future Research 

As future research, the model may be enhanced by considering the following factors. 

Firstly, the accuracy could be significantly improved by using the hybrid model which 

has higher accuracy in less than 2-hour duration case. The L-LDA model showed high 

accuracy in greater than 2-hour duration case. However, insufficient results showed in 

case of less than 2-hour comparing greater than 2-hour case. To solve this problem, the 

L-LDA model combined with other classification models will improve the accuracy. It is 

also helpful in combining additional data to describe the initial situation, such as images 

captured at incident scenes. Image data, unlike text data generated by humans, has the 

advantage of not including errors such as typos. The combination of numerical, text, and 

image data may improve the accuracy of the analysis. 

 Secondly, the incident duration time is affected by not only the status in the early 

stages of the incident but also the response time of every procedure. The accurate 

prediction will be improved by adding additional texts that reflect incident response. In 

this study, only the text of the initial situation is considered for research. However, 

instantaneous response in the early stage of the incident dramatically influences duration 
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time. Therefore, it will also study the adapted method using consideration progress of 

clearing up incident scene and modifying the prediction time according to the response 

activity. 

 Lastly, text data from incident reports can be used to predict the overall severity 

estimation of incidents. This thesis used the data of incident report to predict only 

duration time estimation. The scope of prediction can be expanded by considering fatality, 

hazard spills, etc. If the severity of an incident is predicted early stage, the agile reaction 

will also possible. This could be a useful study to reduce casualties and reduce duration 

time. 
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