67 research outputs found

    The Challenges in SDN/ML Based Network Security : A Survey

    Full text link
    Machine Learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking (SDN) emerge. Sitting at the application layer and communicating with the control layer, machine learning based SDN security models exercise a huge influence on the routing/switching of the entire SDN. Compromising the models is consequently a very desirable goal. Previous surveys have been done on either adversarial machine learning or the general vulnerabilities of SDNs but not both. Through examination of the latest ML-based SDN security applications and a good look at ML/SDN specific vulnerabilities accompanied by common attack methods on ML, this paper serves as a unique survey, making a case for more secure development processes of ML-based SDN security applications.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:1705.0056

    From theory to experimental evaluation: resource management in software-defined vehicular networks

    Get PDF
    Managing resources in dynamic vehicular environments is a tough task, which is becoming more challenging with the increased number of access technologies today available in connected cars (e.g., IEEE 802.11, LIE), in the variety of applications provided on the road (e.g., safety, traffic efficiency, and infotainment), in the amount of driving awareness/coordination required (e.g., local, context, and cooperative awareness), and in the level of automation toward zero-accident driving (e.g., platooning and autonomous driving). The open programmability and logically centralized control features of the software-defined networking (SDN) paradigm offer an attractive means to manage communication and networking resources in the vehicular environment and promise improved performance. In this paper, we enumerate the potentials of software-defined vehicular networks, analyze the need to rethink the traditional SDN approach from theoretical and practical standpoints when applied in this application context, and present an emulation approach based on the proposed node car architecture in Mininet-WiFi to showcase the applicability and some expected benefits of SDN in a selected use case scenario530693076FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP14/18482-

    Machine Learning in IoT Security:Current Solutions and Future Challenges

    Get PDF
    The future Internet of Things (IoT) will have a deep economical, commercial and social impact on our lives. The participating nodes in IoT networks are usually resource-constrained, which makes them luring targets for cyber attacks. In this regard, extensive efforts have been made to address the security and privacy issues in IoT networks primarily through traditional cryptographic approaches. However, the unique characteristics of IoT nodes render the existing solutions insufficient to encompass the entire security spectrum of the IoT networks. This is, at least in part, because of the resource constraints, heterogeneity, massive real-time data generated by the IoT devices, and the extensively dynamic behavior of the networks. Therefore, Machine Learning (ML) and Deep Learning (DL) techniques, which are able to provide embedded intelligence in the IoT devices and networks, are leveraged to cope with different security problems. In this paper, we systematically review the security requirements, attack vectors, and the current security solutions for the IoT networks. We then shed light on the gaps in these security solutions that call for ML and DL approaches. We also discuss in detail the existing ML and DL solutions for addressing different security problems in IoT networks. At last, based on the detailed investigation of the existing solutions in the literature, we discuss the future research directions for ML- and DL-based IoT security

    Detecting Concurrent Distributed Anomalies in Multi-Domain SDN

    Get PDF
    Anomaly Detection is essential to understand the di ff erence between normal and anomalous tra ffi c. An anomaly maybe something that disrupts the network or allows an attacker unwanted access to modify or steal data. An anomaly in a network may occur at various layers. There are applica- tion speci fi c anomalies which attack a speci fi c application or group of applications e.g., MAC layer anomalies mostly DOS/DDOS attacks and anomaly at transport layer is SYN-Flood Attack. It’s a very widely studied concept in both traditional and Software-de fi ned Networking (SDN)
    corecore