263 research outputs found

    A Learning-based Method for Online Adjustment of C-arm Cone-Beam CT Source Trajectories for Artifact Avoidance

    Full text link
    During spinal fusion surgery, screws are placed close to critical nerves suggesting the need for highly accurate screw placement. Verifying screw placement on high-quality tomographic imaging is essential. C-arm Cone-beam CT (CBCT) provides intraoperative 3D tomographic imaging which would allow for immediate verification and, if needed, revision. However, the reconstruction quality attainable with commercial CBCT devices is insufficient, predominantly due to severe metal artifacts in the presence of pedicle screws. These artifacts arise from a mismatch between the true physics of image formation and an idealized model thereof assumed during reconstruction. Prospectively acquiring views onto anatomy that are least affected by this mismatch can, therefore, improve reconstruction quality. We propose to adjust the C-arm CBCT source trajectory during the scan to optimize reconstruction quality with respect to a certain task, i.e. verification of screw placement. Adjustments are performed on-the-fly using a convolutional neural network that regresses a quality index for possible next views given the current x-ray image. Adjusting the CBCT trajectory to acquire the recommended views results in non-circular source orbits that avoid poor images, and thus, data inconsistencies. We demonstrate that convolutional neural networks trained on realistically simulated data are capable of predicting quality metrics that enable scene-specific adjustments of the CBCT source trajectory. Using both realistically simulated data and real CBCT acquisitions of a semi-anthropomorphic phantom, we show that tomographic reconstructions of the resulting scene-specific CBCT acquisitions exhibit improved image quality particularly in terms of metal artifacts. Since the optimization objective is implicitly encoded in a neural network, the proposed approach overcomes the need for 3D information at run-time.Comment: 12 page

    Compressed Sensing Based Reconstruction Algorithm for X-ray Dose Reduction in Synchrotron Source Micro Computed Tomography

    Get PDF
    Synchrotron computed tomography requires a large number of angular projections to reconstruct tomographic images with high resolution for detailed and accurate diagnosis. However, this exposes the specimen to a large amount of x-ray radiation. Furthermore, this increases scan time and, consequently, the likelihood of involuntary specimen movements. One approach for decreasing the total scan time and radiation dose is to reduce the number of projection views needed to reconstruct the images. However, the aliasing artifacts appearing in the image due to the reduced number of projection data, visibly degrade the image quality. According to the compressed sensing theory, a signal can be accurately reconstructed from highly undersampled data by solving an optimization problem, provided that the signal can be sparsely represented in a predefined transform domain. Therefore, this thesis is mainly concerned with designing compressed sensing-based reconstruction algorithms to suppress aliasing artifacts while preserving spatial resolution in the resulting reconstructed image. First, the reduced-view synchrotron computed tomography reconstruction is formulated as a total variation regularized compressed sensing problem. The Douglas-Rachford Splitting and the randomized Kaczmarz methods are utilized to solve the optimization problem of the compressed sensing formulation. In contrast with the first part, where consistent simulated projection data are generated for image reconstruction, the reduced-view inconsistent real ex-vivo synchrotron absorption contrast micro computed tomography bone data are used in the second part. A gradient regularized compressed sensing problem is formulated, and the Douglas-Rachford Splitting and the preconditioned conjugate gradient methods are utilized to solve the optimization problem of the compressed sensing formulation. The wavelet image denoising algorithm is used as the post-processing algorithm to attenuate the unwanted staircase artifact generated by the reconstruction algorithm. Finally, a noisy and highly reduced-view inconsistent real in-vivo synchrotron phase-contrast computed tomography bone data are used for image reconstruction. A combination of prior image constrained compressed sensing framework, and the wavelet regularization is formulated, and the Douglas-Rachford Splitting and the preconditioned conjugate gradient methods are utilized to solve the optimization problem of the compressed sensing formulation. The prior image constrained compressed sensing framework takes advantage of the prior image to promote the sparsity of the target image. It may lead to an unwanted staircase artifact when applied to noisy and texture images, so the wavelet regularization is used to attenuate the unwanted staircase artifact generated by the prior image constrained compressed sensing reconstruction algorithm. The visual and quantitative performance assessments with the reduced-view simulated and real computed tomography data from canine prostate tissue, rat forelimb, and femoral cortical bone samples, show that the proposed algorithms have fewer artifacts and reconstruction errors than other conventional reconstruction algorithms at the same x-ray dose

    Medical Image Analytics (Radiomics) with Machine/Deeping Learning for Outcome Modeling in Radiation Oncology

    Full text link
    Image-based quantitative analysis (radiomics) has gained great attention recently. Radiomics possesses promising potentials to be applied in the clinical practice of radiotherapy and to provide personalized healthcare for cancer patients. However, there are several challenges along the way that this thesis will attempt to address. Specifically, this thesis focuses on the investigation of repeatability and reproducibility of radiomics features, the development of new machine/deep learning models, and combining these for robust outcomes modeling and their applications in radiotherapy. Radiomics features suffer from robustness issues when applied to outcome modeling problems, especially in head and neck computed tomography (CT) images. These images tend to contain streak artifacts due to patients’ dental implants. To investigate the influence of artifacts for radiomics modeling performance, we firstly developed an automatic artifact detection algorithm using gradient-based hand-crafted features. Then, comparing the radiomics models trained on ‘clean’ and ‘contaminated’ datasets. The second project focused on using hand-crafted radiomics features and conventional machine learning methods for the prediction of overall response and progression-free survival for Y90 treated liver cancer patients. By identifying robust features and embedding prior knowledge in the engineered radiomics features and using bootstrapped LASSO to select robust features, we trained imaging and dose based models for the desired clinical endpoints, highlighting the complementary nature of this information in Y90 outcomes prediction. Combining hand-crafted and machine learnt features can take advantage of both expert domain knowledge and advanced data-driven approaches (e.g., deep learning). Thus, we proposed a new variational autoencoder network framework that modeled radiomics features, clinical factors, and raw CT images for the prediction of intrahepatic recurrence-free and overall survival for hepatocellular carcinoma (HCC) patients in this third project. The proposed approach was compared with widely used Cox proportional hazard model for survival analysis. Our proposed methods achieved significant improvement in terms of the prediction using the c-index metric highlighting the value of advanced modeling techniques in learning from limited and heterogeneous information in actuarial prediction of outcomes. Advances in stereotactic radiation therapy (SBRT) has led to excellent local tumor control with limited toxicities for HCC patients, but intrahepatic recurrence still remains prevalent. As an extension of the third project, we not only hope to predict the time to intrahepatic recurrence, but also the location where the tumor might recur. This will be clinically beneficial for better intervention and optimizing decision making during the process of radiotherapy treatment planning. To address this challenging task, firstly, we proposed an unsupervised registration neural network to register atlas CT to patient simulation CT and obtain the liver’s Couinaud segments for the entire patient cohort. Secondly, a new attention convolutional neural network has been applied to utilize multimodality images (CT, MR and 3D dose distribution) for the prediction of high-risk segments. The results showed much improved efficiency for obtaining segments compared with conventional registration methods and the prediction performance showed promising accuracy for anticipating the recurrence location as well. Overall, this thesis contributed new methods and techniques to improve the utilization of radiomics for personalized radiotherapy. These contributions included new algorithm for detecting artifacts, a joint model of dose with image heterogeneity, combining hand-crafted features with machine learnt features for actuarial radiomics modeling, and a novel approach for predicting location of treatment failure.PHDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163092/1/liswei_1.pd

    DEEP LEARNING IN COMPUTER-ASSISTED MAXILLOFACIAL SURGERY

    Get PDF

    Machine learning-based automated segmentation with a feedback loop for 3D synchrotron micro-CT

    Get PDF
    Die Entwicklung von Synchrotronlichtquellen der dritten Generation hat die Grundlage fĂŒr die Untersuchung der 3D-Struktur opaker Proben mit einer Auflösung im Mikrometerbereich und höher geschaffen. Dies fĂŒhrte zur Entwicklung der Röntgen-Synchrotron-Mikro-Computertomographie, welche die Schaffung von Bildgebungseinrichtungen zur Untersuchung von Proben verschiedenster Art förderte, z.B. von Modellorganismen, um die Physiologie komplexer lebender Systeme besser zu verstehen. Die Entwicklung moderner Steuerungssysteme und Robotik ermöglichte die vollstĂ€ndige Automatisierung der Röntgenbildgebungsexperimente und die Kalibrierung der Parameter des Versuchsaufbaus wĂ€hrend des Betriebs. Die Weiterentwicklung der digitalen Detektorsysteme fĂŒhrte zu Verbesserungen der Auflösung, des Dynamikbereichs, der Empfindlichkeit und anderer wesentlicher Eigenschaften. Diese Verbesserungen fĂŒhrten zu einer betrĂ€chtlichen Steigerung des Durchsatzes des Bildgebungsprozesses, aber auf der anderen Seite begannen die Experimente eine wesentlich grĂ¶ĂŸere Datenmenge von bis zu Dutzenden von Terabyte zu generieren, welche anschließend manuell verarbeitet wurden. Somit ebneten diese technischen Fortschritte den Weg fĂŒr die DurchfĂŒhrung effizienterer Hochdurchsatzexperimente zur Untersuchung einer großen Anzahl von Proben, welche DatensĂ€tze von besserer QualitĂ€t produzierten. In der wissenschaftlichen Gemeinschaft besteht daher ein hoher Bedarf an einem effizienten, automatisierten Workflow fĂŒr die Röntgendatenanalyse, welcher eine solche Datenlast bewĂ€ltigen und wertvolle Erkenntnisse fĂŒr die Fachexperten liefern kann. Die bestehenden Lösungen fĂŒr einen solchen Workflow sind nicht direkt auf Hochdurchsatzexperimente anwendbar, da sie fĂŒr Ad-hoc-Szenarien im Bereich der medizinischen Bildgebung entwickelt wurden. Daher sind sie nicht fĂŒr Hochdurchsatzdatenströme optimiert und auch nicht in der Lage, die hierarchische Beschaffenheit von Proben zu nutzen. Die wichtigsten BeitrĂ€ge der vorliegenden Arbeit sind ein neuer automatisierter Analyse-Workflow, der fĂŒr die effiziente Verarbeitung heterogener RöntgendatensĂ€tze hierarchischer Natur geeignet ist. Der entwickelte Workflow basiert auf verbesserten Methoden zur Datenvorverarbeitung, Registrierung, Lokalisierung und Segmentierung. Jede Phase eines Arbeitsablaufs, die eine Trainingsphase beinhaltet, kann automatisch feinabgestimmt werden, um die besten Hyperparameter fĂŒr den spezifischen Datensatz zu finden. FĂŒr die Analyse von Faserstrukturen in Proben wurde eine neue, hochgradig parallelisierbare 3D-Orientierungsanalysemethode entwickelt, die auf einem neuartigen Konzept der emittierenden Strahlen basiert und eine prĂ€zisere morphologische Analyse ermöglicht. Alle entwickelten Methoden wurden grĂŒndlich an synthetischen DatensĂ€tzen validiert, um ihre Anwendbarkeit unter verschiedenen Abbildungsbedingungen quantitativ zu bewerten. Es wurde gezeigt, dass der Workflow in der Lage ist, eine Reihe von DatensĂ€tzen Ă€hnlicher Art zu verarbeiten. DarĂŒber hinaus werden die effizienten CPU/GPU-Implementierungen des entwickelten Workflows und der Methoden vorgestellt und der Gemeinschaft als Module fĂŒr die Sprache Python zur VerfĂŒgung gestellt. Der entwickelte automatisierte Analyse-Workflow wurde erfolgreich fĂŒr Mikro-CT-DatensĂ€tze angewandt, die in Hochdurchsatzröntgenexperimenten im Bereich der Entwicklungsbiologie und Materialwissenschaft gewonnen wurden. Insbesondere wurde dieser Arbeitsablauf fĂŒr die Analyse der Medaka-Fisch-DatensĂ€tze angewandt, was eine automatisierte Segmentierung und anschließende morphologische Analyse von Gehirn, Leber, Kopfnephronen und Herz ermöglichte. DarĂŒber hinaus wurde die entwickelte Methode der 3D-Orientierungsanalyse bei der morphologischen Analyse von PolymergerĂŒst-DatensĂ€tzen eingesetzt, um einen Herstellungsprozess in Richtung wĂŒnschenswerter Eigenschaften zu lenken
    • 

    corecore