10 research outputs found

    Trading Order for Degree in Creative Telescoping

    Full text link
    We analyze the differential equations produced by the method of creative telescoping applied to a hyperexponential term in two variables. We show that equations of low order have high degree, and that higher order equations have lower degree. More precisely, we derive degree bounding formulas which allow to estimate the degree of the output equations from creative telescoping as a function of the order. As an application, we show how the knowledge of these formulas can be used to improve, at least in principle, the performance of creative telescoping implementations, and we deduce bounds on the asymptotic complexity of creative telescoping for hyperexponential terms

    Bounds for D-finite closure properties

    Full text link
    We provide bounds on the size of operators obtained by algorithms for executing D-finite closure properties. For operators of small order, we give bounds on the degree and on the height (bit-size). For higher order operators, we give degree bounds that are parameterized with respect to the order and reflect the phenomenon that higher order operators may have lower degrees (order-degree curves)

    Efficient Algorithms for Mixed Creative Telescoping

    Full text link
    Creative telescoping is a powerful computer algebra paradigm -initiated by Doron Zeilberger in the 90's- for dealing with definite integrals and sums with parameters. We address the mixed continuous-discrete case, and focus on the integration of bivariate hypergeometric-hyperexponential terms. We design a new creative telescoping algorithm operating on this class of inputs, based on a Hermite-like reduction procedure. The new algorithm has two nice features: it is efficient and it delivers, for a suitable representation of the input, a minimal-order telescoper. Its analysis reveals tight bounds on the sizes of the telescoper it produces.Comment: To be published in the proceedings of ISSAC'1

    Convolution surfaces with varying radius: Formulae for skeletons made of arcs of circles and line segments

    Get PDF
    International audienceWe develop closed form formulae for the computation of the defining fields of convolutions surfaces. The formulae are obtained for power inverse kernels with skeletons made of line segments or arcs of circle. To obtain the formulae we use Creative Telescoping and describe how this technique can be used for other families of kernels and skeleton primitives. We apply the new formulae to obtain convolution surfaces around G1\mathcal{G}^1 skeletons, some of them closed curves. We showcase how the use of arcs of circles greatly improves the visualization of the surface around a general curve compared with a segment based approach
    corecore