18,671 research outputs found

    A Utility-Theoretic Approach to Privacy in Online Services

    Get PDF
    Online offerings such as web search, news portals, and e-commerce applications face the challenge of providing high-quality service to a large, heterogeneous user base. Recent efforts have highlighted the potential to improve performance by introducing methods to personalize services based on special knowledge about users and their context. For example, a user's demographics, location, and past search and browsing may be useful in enhancing the results offered in response to web search queries. However, reasonable concerns about privacy by both users, providers, and government agencies acting on behalf of citizens, may limit access by services to such information. We introduce and explore an economics of privacy in personalization, where people can opt to share personal information, in a standing or on-demand manner, in return for expected enhancements in the quality of an online service. We focus on the example of web search and formulate realistic objective functions for search efficacy and privacy. We demonstrate how we can find a provably near-optimal optimization of the utility-privacy tradeoff in an efficient manner. We evaluate our methodology on data drawn from a log of the search activity of volunteer participants. We separately assess users’ preferences about privacy and utility via a large-scale survey, aimed at eliciting preferences about peoples’ willingness to trade the sharing of personal data in returns for gains in search efficiency. We show that a significant level of personalization can be achieved using a relatively small amount of information about users

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Spectrum sharing models in cognitive radio networks

    Get PDF
    Spectrum scarcity demands thinking new ways to manage the distribution of radio frequency bands so that its use is more effective. The emerging technology that can enable this paradigm shift is the cognitive radio. Different models for organizing and managing cognitive radios have emerged, all with specific strategic purposes. In this article we review the allocation spectrum patterns of cognitive radio networks and analyse which are the common basis of each model.We expose the vulnerabilities and open challenges that still threaten the adoption and exploitation of cognitive radios for open civil networks.L'escassetat de demandes d'espectre fan pensar en noves formes de gestionar la distribució de les bandes de freqüència de ràdio perquè el seu ús sigui més efectiu. La tecnologia emergent que pot permetre aquest canvi de paradigma és la ràdio cognitiva. Han sorgit diferents models d'organització i gestió de les ràdios cognitives, tots amb determinats fins estratègics. En aquest article es revisen els patrons d'assignació de l'espectre de les xarxes de ràdio cognitiva i s'analitzen quals són la base comuna de cada model. S'exposen les vulnerabilitats i els desafiaments oberts que segueixen amenaçant l'adopció i l'explotació de les ràdios cognitives per obrir les xarxes civils.La escasez de demandas de espectro hacen pensar en nuevas formas de gestionar la distribución de las bandas de frecuencia de radio para que su uso sea más efectivo. La tecnología emergente que puede permitir este cambio de paradigma es la radio cognitiva. Han surgido diferentes modelos de organización y gestión de las radios cognitivas, todos con determinados fines estratégicos. En este artículo se revisan los patrones de asignación del espectro de las redes de radio cognitiva y se analizan cuales son la base común de cada modelo. Se exponen las vulnerabilidades y los desafíos abiertos que siguen amenazando la adopción y la explotación de las radios cognitivas para abrir las redes civiles

    HySIM: A Hybrid Spectrum and Information Market for TV White Space Networks

    Full text link
    We propose a hybrid spectrum and information market for a database-assisted TV white space network, where the geo-location database serves as both a spectrum market platform and an information market platform. We study the inter- actions among the database operator, the spectrum licensee, and unlicensed users systematically, using a three-layer hierarchical model. In Layer I, the database and the licensee negotiate the commission fee that the licensee pays for using the spectrum market platform. In Layer II, the database and the licensee compete for selling information or channels to unlicensed users. In Layer III, unlicensed users determine whether they should buy the exclusive usage right of licensed channels from the licensee, or the information regarding unlicensed channels from the database. Analyzing such a three-layer model is challenging due to the co-existence of both positive and negative network externalities in the information market. We characterize how the network externalities affect the equilibrium behaviours of all parties involved. Our numerical results show that the proposed hybrid market can improve the network profit up to 87%, compared with a pure information market. Meanwhile, the achieved network profit is very close to the coordinated benchmark solution (the gap is less than 4% in our simulation).Comment: This manuscript serves as the online technical report of the article published in IEEE International Conference on Computer Communications (INFOCOM), 201

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Negotiable Auction Based on Mixed Graph: A Novel Spectrum Sharing Framework

    Full text link
    © 2015 IEEE. Auction-based spectrum sharing is a promising solution to improve the spectrum utilization in 5G networks. Along with the spatial reuse, we observe that the ability to adjust the coverage of a spectrum bidder can provide room to itself for further negotiation while auctioning. In this paper, we propose a novel economic tool, size-negotiable auction mechanism (SNAM), which provides a hybrid solution between auction and negotiation for multi-buyers sharing spectrum chunks from a common database. Unlike existing auction-based spectrum sharing models, each bidder of the SNAM submits its bid for using the spectrum per unit space and a set of coverage ranges over which the bidder is willing to pay for the spectrum. The auctioneer then coordinates the interference areas (or coverage negotiation) to ensure no two winners interfere with each other while aiming to maximize the auction's total coverage area or revenue. In this scenario, the undirected graph used by existing auction mechanisms fails to model the interference among bidders. Instead, we construct a mixed interference graph and prove that SNAM's auctioning on the mixed graph is truthful and individually rational. Simulation results show that, compared with existing auction approaches, the proposed SNAM dramatically improves the spatial efficiency, hence leads to significantly higher seller revenue and buyer satisfaction under various setups. Thanks to its low complexity and low overhead, SNAM can target fine timescale trading (in minutes or hours) with a large number of bidders and requested coverages
    corecore