1,600 research outputs found

    Dependable IMS services - A Performance Analysis of Server Replication and Mid-Session Inter-Domain Handover

    Get PDF

    Update propagation algorithms for supporting disconnected write in mobile wireless systems with data broadcasting capability

    Get PDF
    We develop and analyze algorithms for propagating updates by mobile hosts in wireless client-server environments that support disconnected write operations, with the goal of minimizing the tuning time for update propagation to the server. These algorithms allow a mobile host to update cached data objects while disconnected and propagate the updates to the server upon reconnection for conflict resolutions. We investigate two algorithms applicable to mobile systems in which invalidation reports/data can be broadcast to mobile hosts periodically. We show that there exists an optimal broadcasting period under which the tuning time is minimized for update propagations. We perform a comparative analysis between these two update propagation algorithms that rely on broadcasting data and an algorithm that does not, and identify conditions under which an algorithm should be applied to reduce the total tuning time for update propagation by the mobile user to save the valuable battery power and avoid high communication cost. For real-time applications, we address the tradeoff between tuning time and access time with the goal to select the best update propagation algorithm that can minimize the tuning time while satisfying the imposed real-time deadline constraint. The analysis result is applicable to file/data objects that mobile users may need to modify while on the move

    Cloud transactions and caching for improved performance in clouds and DTNs

    Get PDF
    In distributed transactional systems deployed over some massively decentralized cloud servers, access policies are typically replicated. Interdependencies ad inconsistencies among policies need to be addressed as they can affect performance, throughput and accuracy. Several stringent levels of policy consistency constraints and enforcement approaches to guarantee the trustworthiness of transactions on cloud servers are proposed. We define a look-up table to store policy versions and the concept of Tree-Based Consistency approach to maintain a tree structure of the servers. By integrating look-up table and the consistency tree based approach, we propose an enhanced version of Two-phase validation commit (2PVC) protocol integrated with the Paxos commit protocol with reduced or almost the same performance overhead without affecting accuracy and precision. A new caching scheme has been proposed which takes into consideration Military/Defense applications of Delay-tolerant Networks (DTNs) where data that need to be cached follows a whole different priority levels. In these applications, data popularity can be defined not only based on request frequency, but also based on the importance like who created and ranked point of interests in the data, when and where it was created; higher rank data belonging to some specific location may be more important though frequency of those may not be higher than more popular lower priority data. Thus, our caching scheme is designed by taking different requirements into consideration for DTN networks for defense applications. The performance evaluation shows that our caching scheme reduces the overall access latency, cache miss and usage of cache memory when compared to using caching schemes --Abstract, page iv

    Contour: A Practical System for Binary Transparency

    Full text link
    Transparency is crucial in security-critical applications that rely on authoritative information, as it provides a robust mechanism for holding these authorities accountable for their actions. A number of solutions have emerged in recent years that provide transparency in the setting of certificate issuance, and Bitcoin provides an example of how to enforce transparency in a financial setting. In this work we shift to a new setting, the distribution of software package binaries, and present a system for so-called "binary transparency." Our solution, Contour, uses proactive methods for providing transparency, privacy, and availability, even in the face of persistent man-in-the-middle attacks. We also demonstrate, via benchmarks and a test deployment for the Debian software repository, that Contour is the only system for binary transparency that satisfies the efficiency and coordination requirements that would make it possible to deploy today.Comment: International Workshop on Cryptocurrencies and Blockchain Technology (CBT), 201

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future
    • …
    corecore