57 research outputs found

    Generic Expression Hardness Results for Primitive Positive Formula Comparison

    Full text link
    We study the expression complexity of two basic problems involving the comparison of primitive positive formulas: equivalence and containment. In particular, we study the complexity of these problems relative to finite relational structures. We present two generic hardness results for the studied problems, and discuss evidence that they are optimal and yield, for each of the problems, a complexity trichotomy

    Short Definitions in Constraint Languages

    Get PDF
    A first-order formula is called primitive positive (pp) if it only admits the use of existential quantifiers and conjunction. Pp-formulas are a central concept in (fixed-template) constraint satisfaction since CSP(?) can be viewed as the problem of deciding the primitive positive theory of ?, and pp-definability captures gadget reductions between CSPs. An important class of tractable constraint languages ? is characterized by having few subpowers, that is, the number of n-ary relations pp-definable from ? is bounded by 2^p(n) for some polynomial p(n). In this paper we study a restriction of this property, stating that every pp-definable relation is definable by a pp-formula of polynomial length. We conjecture that the existence of such short definitions is actually equivalent to ? having few subpowers, and verify this conjecture for a large subclass that, in particular, includes all constraint languages on three-element domains. We furthermore discuss how our conjecture imposes an upper complexity bound of co-NP on the subpower membership problem of algebras with few subpowers

    Short definitions in constraint languages

    Full text link
    A first-order formula is called primitive positive (pp) if it only admits the use of existential quantifiers and conjunction. Pp-formulas are a central concept in (fixed-template) constraint satisfaction since CSP(Γ\Gamma) can be viewed as the problem of deciding the primitive positive theory of Γ\Gamma, and pp-definability captures gadget reductions between CSPs. An important class of tractable constraint languages Γ\Gamma is characterized by having few subpowers, that is, the number of nn-ary relations pp-definable from Γ\Gamma is bounded by 2p(n)2^{p(n)} for some polynomial p(n)p(n). In this paper we study a restriction of this property, stating that every pp-definable relation is definable by a pp-formula of polynomial length. We conjecture that the existence of such short definitions is actually equivalent to Γ\Gamma having few subpowers, and verify this conjecture for a large subclass that, in particular, includes all constraint languages on three-element domains. We furthermore discuss how our conjecture imposes an upper complexity bound of co-NP on the subpower membership problem of algebras with few subpowers

    The subpower membership problem of 2-nilpotent algebras

    Full text link
    The subpower membership problem SMP(A) of a finite algebraic structure A asks whether a given partial function from A^k to A can be interpolated by a term operation of A, or not. While this problem can be EXPTIME-complete in general, Willard asked whether it is always solvable in polynomial time if A is a Mal'tsev algebras. In particular, this includes many important structures studied in abstract algebra, such as groups, quasigroups, rings, Boolean algebras. In this paper we give an affirmative answer to Willard's question for a big class of 2-nilpotent Mal'tsev algebras. We furthermore develop tools that might be essential in answering the question for general nilpotent Mal'tsev algebras in the future.Comment: 17 pages (including appendix

    On the reduction of the CSP dichotomy conjecture to digraphs

    Full text link
    It is well known that the constraint satisfaction problem over general relational structures can be reduced in polynomial time to digraphs. We present a simple variant of such a reduction and use it to show that the algebraic dichotomy conjecture is equivalent to its restriction to digraphs and that the polynomial reduction can be made in logspace. We also show that our reduction preserves the bounded width property, i.e., solvability by local consistency methods. We discuss further algorithmic properties that are preserved and related open problems.Comment: 34 pages. Article is to appear in CP2013. This version includes two appendices with proofs of claims omitted from the main articl
    • …
    corecore