256,547 research outputs found

    Energy-based Neural Modelling for Large-Scale Multiple Domain Dialogue State Tracking

    Get PDF
    Scaling up dialogue state tracking to multiple domains is challenging due to the growth in the number of variables being tracked. Furthermore, dialog state tracking models do not yet explicitly make use of relationships between dialogue variables, such as slots across domains. We propose using energy-based structure prediction methods for large-scale dialogue state tracking task in two multiple domain dialogue datasets. Our results indicate that: (i) modelling variable dependencies yields better results; and (ii) the structured prediction output aligns with the dialogue slot-value constraint principles. This leads to promising directions to improve state-of-the-art models by incorporating variable dependencies into their prediction process

    Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking

    Full text link
    Current multi-person localisation and tracking systems have an over reliance on the use of appearance models for target re-identification and almost no approaches employ a complete deep learning solution for both objectives. We present a novel, complete deep learning framework for multi-person localisation and tracking. In this context we first introduce a light weight sequential Generative Adversarial Network architecture for person localisation, which overcomes issues related to occlusions and noisy detections, typically found in a multi person environment. In the proposed tracking framework we build upon recent advances in pedestrian trajectory prediction approaches and propose a novel data association scheme based on predicted trajectories. This removes the need for computationally expensive person re-identification systems based on appearance features and generates human like trajectories with minimal fragmentation. The proposed method is evaluated on multiple public benchmarks including both static and dynamic cameras and is capable of generating outstanding performance, especially among other recently proposed deep neural network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Hierarchically Structured Non-Intrusive Sign Language Recognition

    Get PDF
    This work presents a hierarchically structured approach at the nonintrusive recognition of sign language from a monocular frontal view. Robustness is achieved through sophisticated localization and tracking methods, including a combined EM/CAMSHIFT overlap resolution procedure and the parallel pursuit of multiple hypotheses about hands position and movement. This allows handling of ambiguities and automatically corrects tracking errors. A biomechanical skeleton model and dynamic motion prediction using Kalman filters represents high level knowledge. Classification is performed by Hidden Markov Models. 152 signs from German sign language were recognized with an accuracy of 97.6%

    Context-aware multi-head self-attentional neural network model for next location prediction

    Full text link
    Accurate activity location prediction is a crucial component of many mobility applications and is particularly required to develop personalized, sustainable transportation systems. Despite the widespread adoption of deep learning models, next location prediction models lack a comprehensive discussion and integration of mobility-related spatio-temporal contexts. Here, we utilize a multi-head self-attentional (MHSA) neural network that learns location transition patterns from historical location visits, their visit time and activity duration, as well as their surrounding land use functions, to infer an individual's next location. Specifically, we adopt point-of-interest data and latent Dirichlet allocation for representing locations' land use contexts at multiple spatial scales, generate embedding vectors of the spatio-temporal features, and learn to predict the next location with an MHSA network. Through experiments on two large-scale GNSS tracking datasets, we demonstrate that the proposed model outperforms other state-of-the-art prediction models, and reveal the contribution of various spatio-temporal contexts to the model's performance. Moreover, we find that the model trained on population data achieves higher prediction performance with fewer parameters than individual-level models due to learning from collective movement patterns. We also reveal mobility conducted in the recent past and one week before has the largest influence on the current prediction, showing that learning from a subset of the historical mobility is sufficient to obtain an accurate location prediction result. We believe that the proposed model is vital for context-aware mobility prediction. The gained insights will help to understand location prediction models and promote their implementation for mobility applications.Comment: updated Discussion section; accepted by Transportation Research Part

    Patterns of Text Readability in Human and Predicted Eye Movements

    Full text link
    It has been shown that multilingual transformer models are able to predict human reading behavior when fine-tuned on small amounts of eye tracking data. As the cumulated prediction results do not provide insights into the linguistic cues that the model acquires to predict reading behavior, we conduct a deeper analysis of the predictions from the perspective of readability. We try to disentangle the three-fold relationship between human eye movements, the capability of language models to predict these eye movement patterns, and sentence-level readability measures for English. We compare a range of model configurations to multiple baselines. We show that the models exhibit difficulties with function words and that pre-training only provides limited advantages for linguistic generalization

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Multi-Object Tracking with Interacting Vehicles and Road Map Information

    Full text link
    In many applications, tracking of multiple objects is crucial for a perception of the current environment. Most of the present multi-object tracking algorithms assume that objects move independently regarding other dynamic objects as well as the static environment. Since in many traffic situations objects interact with each other and in addition there are restrictions due to drivable areas, the assumption of an independent object motion is not fulfilled. This paper proposes an approach adapting a multi-object tracking system to model interaction between vehicles, and the current road geometry. Therefore, the prediction step of a Labeled Multi-Bernoulli filter is extended to facilitate modeling interaction between objects using the Intelligent Driver Model. Furthermore, to consider road map information, an approximation of a highly precise road map is used. The results show that in scenarios where the assumption of a standard motion model is violated, the tracking system adapted with the proposed method achieves higher accuracy and robustness in its track estimations
    • …
    corecore