2,868 research outputs found

    Tracking of Time-Variant Radio Propagation Paths using Particle Filtering

    Get PDF

    Tracking and positioning using phase information from estimated multi-path components

    Get PDF
    High resolution radio based positioning and tracking is a key enabler for new or improved cellular services. In this work, we are aiming to track user movements with accuracy down to centimeters using standard cellular bandwidths of 20-40 MHz. The goal is achieved by using phase information from the multi-path components (MPCs) of the radio channels. First, an extended Kalman filter (EKF) is used to estimate and track the phase information of the MPCs. Each of the tracked MPCs can be seen as originating from a virtual transmitter at an unknown position. By using a time difference of arrival (TDOA) positioning algorithm based on a structure-of-motion approach and translating the tracked phase information into propagation distances, the user movements can be estimated with a standard deviation of the error of 4.0 cm. The paper should be viewed as a proof-of-principle and it is shown by measurements that phase based positioning can be a promising solution for movement tracking in cellular systems with extraordinary accuracy

    Positioning Using Terrestrial Multipath Signals and Inertial Sensors

    Get PDF

    Empirical Dynamic Modeling for Low-Altitude UAV Propagation Channels

    Get PDF

    Towards joint communication and sensing (Chapter 4)

    Get PDF
    Localization of user equipment (UE) in mobile communication networks has been supported from the early stages of 3rd generation partnership project (3GPP). With 5th Generation (5G) and its target use cases, localization is increasingly gaining importance. Integrated sensing and localization in 6th Generation (6G) networks promise the introduction of more efficient networks and compelling applications to be developed

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    • …
    corecore