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Abstract— In this contribution a low-complexity particle filter-
ing algorithm is proposed to track the parameters of time-variant
propagation paths in multiple-input multiple-output (MIMO)
radio channels. A state-space model is used to describe the path
evolution in delay, azimuth of arrival, azimuth of departure,
Doppler frequency and complex amplitude dimensions. The
proposed particle filter (PF) has an additional resampling step
specifically designed for wideband MIMO channel sounding,
where the posterior probability density functions of the path
states is usually highly concentrated in the multi-dimensional
state space. Preliminary investigations using measurement data
show that the proposed PF can track paths stably with a small
number of particles, e.g. 5 per path, even in the case where the
paths are undetected by the conventional SAGE algorithm.

Index Terms— Radio propagation channel, sequential Bayesian
estimation, particle filter, state-space model, and maximum-
likelihood estimation.

I. INTRODUCTION

The response of the radio propagation channel can be
modelled as a superposition of multiple path components.
Each component is contributed by an electromagnetic wave
propagating along a path between the transmitter (Tx) and
the receiver (Rx). One path can be characterized by various
dispersion parameters, such as delay, direction of arrival
(DoA), direction of departure (DoD), polarization matrix, as
well as Doppler frequency. In time-variant scenarios, due to
long-term/large-scale fluctuations, these path parameters may
vary with time.

Recently, the temporal behavior of propagation paths have
gained much attention [1], [2]. In [1] the time-variant char-
acteristics of path parameters are considered as an additional
degree of freedom for path clustering. In [2], the evolution of
clusters of paths is illustrated using measurement data. In these
works, the path evolution characteristics are obtained indirectly
from the path parameter estimates computed from individual
observation snapshots. The used estimation methods, e.g. the
SAGE algorithm [2] and the Unitary ESPRIT [1], are derived
under the assumption that the path parameters in different
observation snapshots are independent. This (unrealistic) as-
sumption results in a “loss of information” in the estimation
of the path evolution in time. Furthermore, due to model-order
mismatch and heuristic settings in these algorithms, such as the
(usually fixed) dynamic range, a time-variant path may remain
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undetected in some snapshots. As a result, a time-variant path
can be erroneously considered as several paths. These effects
influence the performance of clustering algorithms and the
effectiveness of the channel models derived based on these
results. It is therefore of great importance to use appropriate
algorithms to estimate the temporal characteristics of paths
directly.

In recent years some methods have been proposed to track
time-variant paths for multiple-input multiple-output (MIMO)
channel sounding [3], [4], [5]. In [3] recursive expectation-
maximization (EM) and recursive space-alternating general-
ized EM (SAGE)-inspired algorithms have been proposed for
tracking of the azimuths of arrival (AoAs) of paths. In [4] and
[5], the extended Kalman filter (EKF) is derived for tracking
of the delays, DoAs, DoDs and complex amplitudes of time-
variant paths. These algorithms are applicable in the case
where the linear approximation of the non-linear observation
model is accurate. In cases where the path parameters fluctuate
dramatically, the linear approximation based on Taylor-series
expansions is so inaccurate that “loss of track” errors may
occur. Furthermore, the parameter updating steps in these
algorithms require calculation of the second-order derivatives
of the received signal with respect to (w.r.t.) the path param-
eters. In channel sounding, these derivatives are computed
numerically using the system response gathered from cali-
bration measurements. In the presence of calibration errors,
these derivatives may be erroneous and cause significant
performance degradation.

In this contribution, we propose to use a sequential Monte-
Carlo method, i.e. a so-called “particle filter (PF)”, to track the
parameters of time-variant paths. Differing from the EKF and
the recursive EM and SAGE-inspired algorithms, the PF can be
applied when the observation model is nonlinear. Furthermore,
it does not require the numerical computation of derivatives.

The organization of the paper is as follows. Section II
presents the state-space model. In Section III, the framework
of the proposed PF is formulated. Section IV describes the
preliminary experimental results of applying the PF to track
paths using measurement data. Conclusive remarks are made
in Section V.

II. SIGNAL MODEL

In this section, we introduce the state space model describ-
ing the time-evolving path parameters, and the observation
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model for the received signal in the Rx of the sounding
equipment. For simplicity of the presentation, these models are
discussed while considering a single-path scenario. Extension
of these models to multiple-path scenarios is straightforward.

A. State-Space Model

We consider a scenario where the environment consists of
time-variant specular paths. The parameters of a path are the
delay τ , the azimuth of departure (AoD) φ1, the AoA φ2, the
Doppler frequency ν, the rates of change of these parameters
that are denoted by ∆τ , ∆φ1, ∆φ2, and ∆ν respectively, as
well as the complex amplitude α. The kth observation of the
state vector of a path is defined as

Ωk = [P T
k ,αT

k ,∆T
k ]T, (1)

where [·]T denotes the transpose operation, P k
.=

[τk, φ1,k, φ2,k, νk]T represents the “position” parameter vec-
tor, ∆k

.= [∆τk,∆φ1,k,∆φ2,k,∆νk]T denotes the “rate-of-
change” parameter vector, and αk

.= [|αk|, arg(αk)]T is
the amplitude vector with |αk| and arg(αk) representing the
magnitude and the argument of αk respectively. The state
vector Ωk is modelled as a Markov process, i.e.

p(Ωk|Ω1:k−1) = p(Ωk|Ωk−1), k ∈ [1, . . . , K], (2)

where Ω1:k−1
.= {Ω1, . . . ,Ωk−1} is a sequence of state values

from the 1st to the (k − 1)th observation, and K denotes the
total number of observations. The transition of Ωk w.r.t. k is
modelled as

P k

αk

∆k




︸ ︷︷ ︸
Ωk

=


 I4 04×2 TkI4

Jk I2 02×4

04×4 04×2 I4




︸ ︷︷ ︸
F k

.
=


P k−1

αk−1

∆k−1




︸ ︷︷ ︸
Ωk−1

+


04×1

vα,k

v∆,k




︸ ︷︷ ︸
vk

.
=

, (3)

where In represents the n × n identity matrix, 0b×c is the
all-zero matrix of dimension b × c,

Jk =
[
0 0 0 0
0 0 0 2πTk

]
,

and Tk denotes the interval between the starts of the (k−1)th
and the kth observation periods. The vector vk in (3) contains
the driving process in the amplitude vector

vα,k
.= [v|α|,k, varg(α),k]T (4)

and in the rate-of-change parameter vector

v∆,k
.= [v∆τ,k, v∆φ1,k, v∆φ2,k, v∆ν,k]T. (5)

The entries v(·),k in (4) and (5) are independent Gaussian
random variables v(·),k ∼ N (0, σ2

(·)).
In this contribution, we consider the case with Tk = T ,

k ∈ [1, . . . , K]. For notational brevity, we drop the subscript
k in F k in the sequel.

B. Observation Model

In the kth observation period, the discrete-time signals at
the output of the m2th Rx antenna when the m1th Tx antenna
transmits can be written as

yk,m1,m2(t) = xk,m1,m2(t;Ωk) + nk,m1,m2(t),
t ∈ [tk,m1,m2 , tk,m1,m2 + T ),
m1 = 1, . . . , M1, m2 = 1, . . . , M2, (6)

where tk,m1,m2 denotes the time instant when the m2th Rx
antenna starts to receive signals while the m1th Tx antenna
transmits, T is the sensing duration of each Rx antenna, M1

and M2 represent the total number of Tx antennas and Rx
antennas respectively. The signal contribution xk,m1,m2(t;Ωk)
reads

xk,m1,m2(t;Ωk) = αk exp(j2πνkt)c1,m1(φk,1)c2,m2(φk,2)
· u(t − τk). (7)

Here, c1,m1(φ) and c2,m2(φ) represent respectively the re-
sponse in azimuth of the m1th Tx antenna, and the response
in azimuth of the m2th Rx antenna, u(t − τk) denotes the
transmitted signal delayed by τk. The noise nk,m1,m2(t) in
(6) is a zero-mean Gaussian process with spectrum height σ2

n.
For notational convenience, we use the vector yk to represent
all the samples received in the kth observation period and
y1:k

.= {y1,y2, . . . ,yk} to denote a sequence of observations.

III. THE PARTICLE FILTER

From (2) and (6) we see that the received signal yk depends
only on the current state Ωk and is conditionally independent
of the other states given Ωk. Utilizing this property, a particle
filtering (PF) approach can be used to estimate the posterior
probability density function (pdf) p(Ω1:k|y1:k) sequentially
[6]. The facts that the parameter space is multi-dimensional1

and the temporal and spatial observation apertures are large in
order to achieve high resolution pose a noticeable challenge
when using the PF in wideband MIMO sounding. As a result,
the posterior pdf p(Ω1:k|y1:k) is highly concentrated in the
parameter space. It is then difficult to “steer” the particle sets
to the regions where the probability mass is localized. The
proposed PF is specifically designed to solve this problem. In
this section we first present the algorithm while considering
a single-path scenario, and then discuss the extension of the
algorithm for tracking multiple paths.

A. Initialization of Particle States

We initialize the particle states by using the parameter
estimates obtained with the conventional SAGE algorithm [7].
This algorithm is derived based on the assumption that the path
parameters at different observation snapshots are independent.
In this contribution, we use the PF to track Ωk from the 3rd
observation period. The vector Ωi

k of the ith particle has the
initial state Ωi

2. The position parameter vector P i
2 are set to

be identical with the parameter estimates obtained with the
SAGE algorithm in the 2nd observations. The rate of change
parameters are calculated by taking the difference between the
SAGE estimates obtained at the 1st and the 2nd observations.

B. Framework of the PF

When a new observation, say yk, is available, the PF
performs the following steps.

Step 1: Predict the states of particles and calculate impor-
tance weights. The output from the previous observations are
the set {Ωi

k−1, w
i
k−1}, where wi

k−1 denotes the importance
weight of the ith particle. We first predict the states of all

1The parameter space has dimension up to 14 in the specular-path scenario
[7] and up to 28 in the dispersive-path scenario [8].
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particles for the kth observation period. The rate-of-change
parameter vector ∆i

k is updated as

∆i
k = ∆i

k−1 + ∆wi
k, i = 1, . . . , I, (8)

where I denotes the total number of particles, and the vector
∆wi

k is drawn from a N (0,Σw) distribution. The diagonal
covariance matrix Σw reads

Σw = diag(σ2
∆τ , σ2

∆φ1
, σ2

∆φ2
, σ2

∆ν). (9)

The values of the diagonal elements σ2
∆(·) with (·) replaced

by τ , φ1, φ2 or ν, are predetermined. The position vector P i
k

is calculated as

P i
k = P i

k−1 + ∆i
k. (10)

The complex amplitude αi
k is computed analytically as

αi
k =

(si
k)Hyk

‖si
k‖2

, (11)

where (·)H represents the Hermitian transpose, ‖ · ‖ denotes
the Euclidian norm of the given argument, and the vector si

k

contains the elements

si
k,m1,m2

(t;P i
k) = exp(j2πνi

kt)c1,m1(φ
i
1,k)c2,m2(φ

i
2,k)

· u(t − τ i
k), t ∈ [tk,m1,m2 , tk,m1,m2 + T ).

The importance weights of the particles are calculated as

wi
k =

wi
k−1p(yk|Ωi

k)
I∑

i=1

wi
k−1p(yk|Ωi

k)
, i = 1, . . . , I (12)

with

p(yk|Ωi
k) ∝ exp(− 1

2σ2
n

‖yk − αi
ksi

k‖2). (13)

Step 2: Additional resampling. In wideband MIMO channel
sounding, the amount of temporal-spatial samples in one ob-
servation period is usually large. As a consequence, significant
portions of the posterior pdf p(Ω1:k|y1:k) are concentrated
around the modes of the pdf. As the path parameters evolve
over time, the particles with predicted states can be too diffuse
to “catch” the probability mass. One brute-force solution is to
employ a large number of particles. However the resulting
complexity prohibits any practical implementation. This prob-
lem can be overcome with low complexity using the methods
proposed for vision–based robot localization and tracking, e.g.
assuming a noise variance higher than its true value, distribut-
ing particles either uniformly within a subset of the parameter
space [9] or based on multi-hypothesis [10]. However, these
methods have the drawback that the weighted particles do
not approximate the true posterior density p(Ω1:k|y1:k), and
consequently, the estimation results can be artifacts.

In this contribution, we introduce an additional resampling
step where two techniques are used for allocation of parti-
cles without misinterpreting the posterior density. This step
is activated when the importance weights of the particles
obtained from (12) are all negligible. The first technique
consists in using a part of the observation samples, denoted
by ỹk, to calculate the importance weights. As the number of
observation samples in ỹk is less than that in yk, the posterior
pdf p(Ωk|ỹk,y1:k−1) is less concentrated than the original pdf

p(Ωk|y1:k). Thus, the particles can have higher probability to
get significant importance weights.

The second method consists in computing the importance
weights as

w̃i
k ∝ log p(yk|Ωi

k) + log wi
k−1. (14)

The obtained set {Ωi
k, w̃i

k} is an estimate of the function
log p(Ω1:k|y1:k). This function exhibits the same modes as
p(Ω1:k|y1:k) but also a wider curvature in the vicinities of
the modes. So, the probability to get non-negligible importance
weights is enhanced.

Based on these two methods, we propose an additional
resampling step, which can be implemented according to the
following pseudo code.

for n = 1 to N do
Step 2.1 Select ỹn

k ∈ yk.
Step 2.2 Calculate the importance weights w̃i

k, i =
1, . . . , I .
if {w̃i

k} contains non-significant values, e.g. less than
max{w̃i

k} − 3, then
Step 2.3 Find the indices A = {is} of the particles
with significant importance weights. Let D denote the
number of particles with non-significant weights.
Step 2.4 Generate D new particles with states drawn
from p(Ωk|Ωj(Ad)

k−1 ), d = 1, . . . , D. Here, Ad denotes
the dth element of A, and j(Ad) is the index of
a particle in the (k − 1)th observation, from which
the Adth particle in the kth observation is generated.
Replace the particles that have non-significant weights
by the new particles.
Step 2.5 Update the importance weights wi

k−1 as

wi
k−1 = J(i)−1w

j(i)
k−1, i = 1, . . . , I, (15)

where J(i) represents the total number of new particles
that are generated using the j(i)th particle in the (k −
1)th observation. Go to Step 2.2.

end if
end for
Step 3: Normal resampling. The operations performed in

this step are similar to those shown in the loop in Step 2 except
that the importance weights w̃i

k are replaced by wi
k and the

observation ỹn
k is substituted with yk.

Step 4: Estimate the posterior pdf. The estimate of the
posterior pdf can be approximated with the particle states and
importance weights

p̂(Ωk|y1:k) =
I∑

i=1

wi
kδ(Ωk − Ωi

k). (16)

This pdf estimates can be used to estimate the expectation of
a function of Ωk. For example, in the single-path scenario, the
state vector Ωk for the path can be estimated as

Ω̂k =
I∑

i=1

Ωi
kwi

k. (17)

C. Extension to Multi-Path Scenarios

We considered the case where the paths are dispersive in
multiple dimensions. In such a case, the states of different
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paths do not coincide with high probability. The paths can then
be tracked individually by using separate PFs. The states of the
particles in each PF are initialized with the parameter estimates
of a specific path. This method is used to track multiple paths
in the experimental investigations introduced in Section IV.

IV. EXPERIMENTAL INVESTIGATION

The measurement data was collected using the wideband
MIMO channel sounder Elektrobit Propsound CS [11] [12].
This channel sounder operates according to a time-division-
multiplexing switching mode [13]. A “measurement cycle” is
referred to as the operation where all possible pairs of Tx
and Rx antennas are switched once. Measurement data was
acquired in a burst mode. Each burst has a duration of 16
cycles. Only the data received in the first four cycles in each
burst are stored. The sounder setting is reported in Table 1 in
[8]. The Tx and the Rx were both equipped with two identical
9-element circular arrays. A diagram of the arrays is shown
in Fig. 2 in [8].

We use measurement data acquired in a long corridor. Fig.
1 depicts the premises of the environment and the photographs
of the Tx and Rx surroundings. The Rx was fixed at the
location marked with a red “⊗” on the map. The Tx was
moving towards the Rx with a constant speed along the route
marked in red on the map. The Rx was positioned behind a
metal door with reinforced glass. There was no line-of-sight
path for this scenario. During the measurement, no people
were walking. We consider the measurement data collected in
100 consecutive bursts, which has a total time span of 26.93
s. During this period, the Tx moved 7.5 m with a speed of
approximately 0.5 m/s. The time-evolution behavior of the
propagation paths can be observed from the variation of the
power delay profiles (PDPs) of the received signal at different
bursts. Fig. 2 shows the average PDPs calculated from the
signals received in the burst, for totally 50 consecutive bursts.
It can be observed that some peaks of the PDPs move with
increasing delay, while others exhibit decreasing delay.

We use the proposed PF to track the parameters of three
paths. The parameter estimates of three paths obtained with
the SAGE algorithm are applied to initialize the states of the
particles. The PF uses 5 particles per path with σ∆τ = 1.5
ns, σ∆φ1 = σ∆φ2 = 4◦ and σ∆ν = 5 Hz. Notice that in

71.72m 0deg

Tx
Rx

Array orientation

Tx surroundings Rx surroundings

Map of the premises

Fig. 1. Photographs and the map of the investigated environment.

Fig. 2. Average power delay profiles of the received signals computed from
50 bursts.

experimental scenarios where σ∆τ , σ∆φ1 , σ∆φ2 and σ∆ν are
unknown, these parameters can be estimated using ray-tracing
techniques based on some assumption on the motions of the
Tx and the Rx. In this preliminary investigation, for simplicity
we select these parameters in such a way that they are very
likely larger than the true parameters.

Fig. 3 depicts the trajectories of the parameters of three
paths estimated using the PF. In Fig. 3(a), the trajectories of
the path delays are overlapped with the PDPs calculated for
the 100 bursts. The estimated delay trajectories are consistent
with the time-variations of the peaks in the PDPs. In Fig.
3(b)–(f), the parameter estimates of 3 paths obtained with
the conventional SAGE algorithm are also depicted. The
trajectories estimated with the PF match the SAGE estimates
for most of the bursts. Furthermore, the filter is able to track
a path even in the interval where the SAGE algorithm failed
to detect this path (e.g. Path 3 is undetected by the SAGE
algorithm in the burst interval [82, 100]).

From Fig. 3(b) we observe that the delay trajectory of
Path 3 fluctuates significantly in the burst interval [80, 90].
In addition, the Doppler frequency trajectories also exhibit
large fluctuations, compared to the SAGE estimates. These
effects may be due to the following reasons. First, in this
preliminary study the PF is used to track paths individually. In
the case where a path is close to other paths in the parameter
space, the particles may be steered to a wrong position due to
interference. The observation of significant fluctuations in the
trajectories can also be due to the inappropriate settings of the
variance parameters σ2

∆(·). For instance, the standard deviation
σ∆ν of Doppler frequency is specified to be 5 Hz. However,
this figure is actually much larger than the true value for all
tracked paths. Furthermore, the fluctuations of the trajectories
may be caused by the fact that the PF uses only 5 particles for
tracking each path. This is probably not enough for accurate
estimation of the posterior pdf in the dimensions where the
intrinsic resolutions of the sounder are low.

To check whether the path evolution behavior estimated by
the PF is sensible, we plot a sketch representing grossly the
geometry of the environment in Fig. 4 and reconstruct three
possible propagation paths approximately. The table attached
in Fig. 4 lists some characteristics of these paths drawn from
the geometry. We observe that the paths tracked by the PF from
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Fig. 3. Performance of the PF in tracking three time-variant paths. The
legend given in (b) applies to (a)–(f). In (a), the PDPs computed from 100
bursts are shown in the background.

the measurement data exhibit time-evolution characteristics
similar to those of the paths in Fig. 4. This demonstrates that
the proposed PF is applicable for the estimation of the time-
variant characteristics of propagation paths.

V. CONCLUSIONS

In this contribution, a particle filtering algorithm was de-
signed and used to track the parameters of time-variant prop-
agation paths for channel sounding. The considered parame-
ters include delay, azimuth of arrival, azimuth of departure,
Doppler frequency, the rates of change of these parameters, as
well as the complex amplitude of individual paths. The particle
filter (PF) proposed has an additional resampling step, specif-
ically designed for wideband MIMO channel sounding. The
performance of this algorithm was evaluated using measure-
ment data. The proposed PF is capable to track paths stably
through the measurement, even in the case when these paths
remain undetected with the conventional SAGE algorithm. The
estimated time-evolution characteristics are in accordance with
the geometry of the investigated environment. Additionally,
this proposed PF performs well for a low number of particles
per path. The complexity of the PF is even lower than that of
the conventional SAGE algorithm. These results demonstrated
that the proposed PF is a suitable algorithm for the estimation

RxTx

door

Path 1 Path 2Path 3

Txarrayorientation

0deg
mi

pl

Rxarrayorientation

0deg
mi

pl

velocity

Path Delay rate of change AoA AoD Doppler frequency
No. 1 −0.5 ns/burst 0◦ −180◦ 8 Hz
No. 2 −0.5 ns/burst 170◦ −180◦ 8 Hz
No. 3 +0.5 ns/burst 0◦ 0◦ −8 Hz

Fig. 4. Geometries and characteristics of reconstructed propagation paths
in the investigated environment. The approximate values of the AoAs, AoDs
and Doppler frequencies computed from the geometrical figure are reported
in the table.

of the characteristics of time-variant propagation paths in
wideband MIMO channel sounding.
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