2,138 research outputs found

    Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channels

    No full text
    The paper investigates adaptive equalization of time dispersive mobile ratio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE

    Steady-State Performance Analyses of Adaptive Filters

    Get PDF

    A stochastic gradient adaptive filter with gradient adaptive step size

    Get PDF
    Journal ArticleAbstract-This paper presents an adaptive step-size gradient adaptive filter. The step size of the adaptive filter is changed according to a gradient descent algorithm designed to reduce the squared estimation error during each iteration. An approximate analysis of the performance of the adaptive filter when its inputs are zero mean, white, and Gaussian and the set of optimal coefficients are time varying according to a random walk model is presented in the paper. The algorithm has very good convergence speed and low steady-state misadjustment. Furthermore, the tracking performance of these algorithms in nonstationary environments is relatively insensitive to the choice of the parameters of the adaptive filter and is very close to the best possible performance of the least mean square (LMS) algorithm for a large range of values of the step size of the step size adaptation algorithm. Several simulation examples demonstrating the good properties of the adaptive filter as well as verifying the analytical results are also presented in the paper

    Variable step-size sign natural gradient algorithm for sequential blind source separation

    Get PDF
    A novel variable step-size sign natural gradient algorithm (VS-S-NGA) for online blind separation of independent sources is presented. A sign operator for the adaptation of the separation model is obtained from the derivation of a generalized dynamic separation model. A variable step size is also derived to better match the dynamics of the input signals and unmixing matrix. The proposed sign algorithm is appealing in practice due to its computational simplicity. Experimental results verify the superior convergence performance over conventional NGA in both stationary and nonstationary environments

    Analysis and Evaluation of the Family of Sign Adaptive Algorithms

    Get PDF
    In this thesis, four novel sign adaptive algorithms proposed by the author were analyzed and evaluated for floating-point arithmetic operations. These four algorithms include Sign Regressor Least Mean Fourth (SRLMF), Sign Regressor Least Mean Mixed-Norm (SRLMMN), Normalized Sign Regressor Least Mean Fourth (NSRLMF), and Normalized Sign Regressor Least Mean Mixed-Norm (NSRLMMN). The performance of the latter three algorithms has been analyzed and evaluated for real-valued data only. While the performance of the SRLMF algorithm has been analyzed and evaluated for both cases of real- and complex-valued data. Additionally, four sign adaptive algorithms proposed by other researchers were also analyzed and evaluated for floating-point arithmetic operations. These four algorithms include Sign Regressor Least Mean Square (SRLMS), Sign-Sign Least Mean Square (SSLMS), Normalized Sign-Error Least Mean Square (NSLMS), and Normalized Sign Regressor Least Mean Square (NSRLMS). The performance of the latter three algorithms has been analyzed and evaluated for both cases of real- and complex-valued data. While the performance of the SRLMS algorithm has been analyzed and evaluated for complex-valued data only. The framework employed in this thesis relies on energy conservation approach. The energy conservation framework has been applied uniformly for the evaluation of the performance of the aforementioned eight sign adaptive algorithms proposed by the author and other researchers. In other words, the energy conservation framework stands out as a common theme that runs throughout the treatment of the performance of the aforementioned eight algorithms. Some of the results from the performance evaluation of the four novel sign adaptive algorithms proposed by the author, namely SRLMF, SRLMMN, NSRLMF, and NSRLMMN are as follows. It was shown that the convergence performance of the SRLMF and SRLMMN algorithms for real-valued data was similar to those of the Least Mean Fourth (LMF) and Least Mean Mixed-Norm (LMMN) algorithms, respectively. Moreover, it was also shown that the NSRLMF and NSRLMMN algorithms exhibit a compromised convergence performance for realvalued data as compared to the Normalized Least Mean Fourth (NLMF) and Normalized Least Mean Mixed-Norm (NLMMN) algorithms, respectively. Some misconceptions among biomedical signal processing researchers concerning the implementation of adaptive noise cancelers using the Sign-Error Least Mean Fourth (SLMF), Sign-Sign Least Mean Fourth (SSLMF), and their variant algorithms were also removed. Finally, three of the novel sign adaptive algorithms proposed by the author, namely SRLMF, SRLMMN, and NSRLMF have been successfully employed by other researchers and the author in applications ranging from power quality improvement in the distribution system and multiple artifacts removal from various physiological signals such as ElectroCardioGram (ECG) and ElectroEncephaloGram (EEG)

    On feed-through terms in the lms algorithm

    Get PDF
    The well known least mean squares (LMS) algorithm is studied as a control system. When applied in a noise canceller a block diagram approach is used to show that the step size has two upper limits. One is the conventional limit beyond which instability results. The second limit shows that if the step size is chosen to be too large then feed-through terms consisting of signal times noise will result in an additive term at the noise canceller output. This second limit is smaller than the first and will cause distortion at the noise canceller output
    corecore