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A Stochastic Gradient Adaptive Filter with Gradient 
Adaptive Step Size

V . John M athew s, Senior Member, IEEE, and Zhenhua X ie , Member, IEEE

Abstract—This paper presents an adaptive step-size gradient 
adaptive filter. The step size of the adaptive filter is changed 
according to a gradient descent algorithm designed to reduce 
the squared estimation error during each iteration. An approx­
imate analysis of the performance of the adaptive filter when 
its inputs are zero mean, white, and Gaussian and the set of 
optimal coefficients are time varying according to a random- 
walk model is presented in the paper. The algorithm has very 
good convergence speed and low steady-state misadjustment. 
Furthermore, the tracking performance of these algorithms in 
nonstationary environments is relatively insensitive to the 
choice of the parameters of the adaptive filter and is very close 
to the best possible performance of the least mean square (LMS) 
algorithm for a large range of values of the step size of the step- 
size adaptation algorithm. Several simulation examples dem­
onstrating the good properties of the adaptive filter as well as 
verifying the analytical results are also presented in the paper.

I . In t r o d u c t i o n

S TOCHASTIC gradient adaptive filters are extremely 
popular because o f their inherent simplicity. H ow­

ever, they suffer from relatively slow and data-dependent 
convergence behavior. It is well known that the perfor­
mance o f stochastic gradient methods is adversely af­
fected by high eigenvalue spreads o f  the autocorrelation 
matrix o f the input vector.

Traditional approaches for improving the speed o f con­
vergence o f  the gradient adaptive filters have been to em­
ploy time-varying step-size sequences [4 ]-[6 ], [9], [10], 
The idea is to somehow sense how far away the adaptive 
filter coefficients are from the optimal filter coefficients 
and use step sizes that are small when adaptive filter coef­
ficients are close to the optimal values and use large step 
sizes otherwise. The approach is heuristically sound and 
has resulted in several ad  hoc  techniques, where the se­
lection o f the convergence parameter is based on the mag­
nitude o f the estimation error [6], polarity o f the succes­
sive samples o f  the estimation error [4], measurement o f  
the cross correlation o f the estimation error with input data
[5], [10], and so on. Experimentation with these tech-
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niques has shown that their performance is highly de­
pendent on the selection o f certain parameters in the al­
gorithms and, furthermore, the optimal choice o f  these 
parameters is highly data dependent. This fact has se­
verely limited the usefulness o f such algorithms in prac­
tical applications. Mikhael et al.  [9] have proposed meth­
ods for selecting the step sizes that would give the fastest 
speed o f convergence among all gradient adaptive algo­
rithms attempting to reduce the squared estimate error. 
Unfortunately, their choices o f  the step sizes w ill also re­
sult in fairly large values o f  steady-state excess mean- 
squared estimation error.

This paper presents a stochastic gradient adaptive fil­
tering algorithm that overcomes many o f  the limitations 
o f the methods discussed above. The idea is to change the 
time-varying convergence parameters in such a way that 
the change is proportional to the negative o f  the gradient 
o f the squared estimation error with respect to the con­
vergence parameter. The method was originally intro­
duced by Shin and Lee [11], Their analysis, which was 
based on several simplifying assumptions, indicated that 
the steady-state behavior o f the adaptive filter depended 
on the initial choice o f the step size. Specifically, their 
analysis predicted that the steady-state value o f the step 
size is always larger than the initial value o f the step size 
and is a function o f the initial step size. This implies that 
the steady-state misadjustment w ill be large and will de­
pend on the initial step size. These statements are contra­
dictory to what has been observed in practice. Experi­
ments have shown that the algorithms have very good 
convergence speeds as well as small misadjustments, ir­
respective o f the initial step sizes. Our objectives in dis­
cussing the algorithm are essentially twofold: 1) Publicize 
this relatively unknown, but powerful adaptive filtering 
algorithm to the signal processing community, and 2) 
present an analysis o f the adaptive filter that matches the 
observed behavior o f the algorithm. Another algorithm 
that is conceptually similar to, but computationally more 
expensive than the one discussed here, was recently pre­
sented in [1],

The rest o f the paper is organized as follow s. In the 
next section, we will derive the adaptive step size, sto­
chastic gradient adaptive filter. In Section III, we present 
a theoretical performance analysis o f the algorithm. Sim­
ulation examples demonstrating the good properties o f the 
adaptive filter and also demonstrating the validity o f the 
analysis are presented in Section IV. Finally, concluding 
remarks are made in Section V.
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II. T h e  G r a d i e n t  A d a p t i v e  S t e p - S i z e  A l g o r i t h m  

Consider the problem o f  estimating the desired re­
sponse signal d(n) as a linear combination o f  the elements 
o f X(n),  the ^-dimensional input vector sequence to the 
adaptive filter. The popular least mean square (LMS) 
adaptive filter updates the filter coefficients in the follow ­
ing manner:

e(n) = d(n) -  X T(n) H(ri) (1)
and

H(n + 1) =  H(n) +  fiX(n)e(n). (2)

Here, ( - ) r denotes the matrix transpose o f  ( • ) , H(n) is the 
coefficient vector at time n, and p. is the step-size param­
eter that controls the speed o f  convergence as well as the 
steady-state and/or tracking behavior o f  the adaptive fil­
ter. The selection o f  fi is very critical for the LMS algo­
rithm. A small fi (small compared to the reciprocal o f  the 
input signal strength) w ill ensure small misadjustments in 
steady state, but the algorithm w ill converge slowly and 
may not track the nonstationary behavior o f  the operating 
environment very w ell. On the other hand, a large n  will 
in general provide faster convergence and better tracking 
capabilities at the cost o f  higher misadjustments. Any se­
lection must be a compromise between the two scenarios 
described above.

The adaptive step-size algorithm that w ill be introduced 
now is designed to eliminate the “ guesswork” involved  
in selection o f  the step-size parameter, and at the same 
time satisfy the following requirements: 1) The speed o f 
convergence should be fast; 2) when operating in station­
ary environments, the steady-state misadjustment values 
should be very small; and 3) when operating in nonsta­
tionary environments, the algorithm should be able to 
sense the rate at which the optimal coefficients are chang­
ing and select step-sizes that can result in estimates that 
are close to the best possible in the mean-squared-error 
sense. Our approach to achieving the above goals is to 
adapt the step-size sequence using a gradient descent al­
gorithm so as to reduce the squared-estimation error at 
each time. This approach w ill result in the following al­
gorithm [11]:

e(n) =  d(ti) -  H T(n)X(n) 

fi{ri) =  n{n -  1) -  £ e \ n )
2 dfi(n — 1)

P d Te2(n) dH(n)

(3)

(4a)

(4b)=  u(n  — 1) —
2 dH(n) d/j.(n — 1)

=  fj.(n — 1) +  pe(n)e(n -  \ ) X T(n - 1  )X(n) (5)

and

(6)2 dH(n)

= H(n) + fi(n)e(n)X(n). (7)

In the above equations, p is a small positive constant that 
controls the adaptive behavior o f the step-size sequence 
H(n).

Remark 1: The increase in computational complexity 
o f the above algorithm over the LMS algorithm is mini­
mal. If the algorithm is used in single-channel applica­
tions so that the input vector is formed using the N  most 
recent samples o f  the input signal, i.e .,

X(n) = [x(n), x(n  -  1), • • • , x(n  -  N  + 1)] T (8)

the additional computations correspond to four multipli­
cations and three additions per sample. In addition, the 
algorithm requires approximately N  more memory loca­
tions than the LMS algorithm.

Remark 2: Deriving conditions on p so that conver­
gence o f  the adaptive system can be guaranteed appears 
to be a difficult task. However, we can guarantee (mean- 
squared) convergence o f  the adaptive filter by restricting 
fi(n) to be such that it always stays within the range that 
would ensure convergence. A sufficient, but not neces­
sary, condition on n(n)  (assuming stationarity o f  the input 
process) to ensure mean-squared convergence o f  the 
adaptive filter is [3]

(9)3 tr {/?}

where tr { (•)}  denotes trace o f  the matrix (•)  and R  is the 
autocorrelation matrix o f  the input vector given by

R  = E  {X(n) X T(n)}. ( 10)
If n(n) falls outside the range in (9), we can bring it inside 
the range by setting it to the closest o f  0 or 2 / 3  tr {/?}. 
(Note that [3] uses 2 ^ as the step size and, consequently, 
the upper bound in (9) is different from that in [3] by a 
factor o f 2 .)

Remark 3: There exist some signals such that X T(n — 
1) X{n) =  0 for all n. An exam ple1 is that where {*(«)} 
is given by the sequence { • • •, 1, — 1, +  1, —1, + 1 ,  
- 1 ,  + 1 , —1, 1, —1, • • •  }. When N  is even, X T(n — 
1)X(«) =  0 for all n. In such cases, the step-size adapta­
tion algorithm w ill not update the step size. Conse­
quently, it would be advisable to initialize the step size to 
some small positive value, so that the filter adapts to the 
environment always. However, we believe that occur­
rences o f  such signals as in the above example will be 
extremely rare in practice and we will assume that the step 
size w ill adapt to the environment. For the random signals 
considered for the analysis in the next section, the adap­
tation o f the step sizes w ill occur with probability one.

Remark 4: It is possible to adapt the step size corre­
sponding to each coefficient individually. Such an ap­
proach will result in the following algorithm [8]:

e(n) = d{ri) -  H T(n)X(n) ( 11)

#*/(«) =  “  1) +  pe(n)e(n -  1 ) x , («)*;(« “  1);

i = 0, 1, • • •, AT -  1 (12)

’The authors thank one of the anonymous reviewers for pointing out this 
example.
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and

hi(n  +  1) =  hi(n) - M « ) d e 2(n) 
2 dhi (n )

=  (ri) +  ji; (/i)e(/t)x,'(n);

i = 0 ,1 ,  • • • , N  -  1. (13)

Here, hj(n)  and x,(ri) are the ith elements o f  H(n) and 
X(ri), respectively. The computational complexity o f  this 
algorithm is 3N  +  4 multiplications per sample. We have 
found that this algorithm performs slightly better than the 
one in (3 )-(7) for multichannel and nonlinear adaptive fil­
tering applications. Both methods seem to perform about 
the same in single-channel applications. The rest o f the 
paper deals only with the algorithm that utilizes a single 
step size.

III. P e r f o r m a n c e  A n a l y s i s  

For the performance analysis, we w ill assume that the 
adaptive filter structure is that o f an /V-point FIR filter, 
and the input vector X(n) is obtained as a vector formed 
by the most recent N  samples o f the input sequence x  (n ) , 
i .e .,

X(n) =  [*(«), x (n  -  1), , x (n  -  N  + l ) ] r. (14)

Let Hopt(n) denote the optimal coefficient vector (in the 
minimum mean-squared estimation error sense) for esti­
mating the desired response signal d(n) using X(n).  We 
will assume that H opt(n) is time varying, and that the time 
variations are caused by a random disturbance o f the op­
timal coefficient process. Thus, the behavior o f the opti­
mal coefficient process can be modeled as

1) (15)Hopt(n) =  H opx(n -  1) +  C(n

where C(n — 1) is the disturbance process that is a zero- 
mean and white vector process with covariance matrix 
a 2cI. In order to make the analysis tractable, we will make 
use o f the following assumptions and approximations.

i) X(n), d(n) are jointly Gaussian and zero-mean ran­
dom processes. X(n)  is a stationary process. Moreover, 
{X(n), d(n)}  is uncorrelated with {X(k),  d(k)}  if  n ^  k. 
This is the commonly employed indepedence assumption 
and is seldom true in practice. However, analyses em­
ploying this assumption have produced reliable design  
rules in the past.

ii) The autocorrelation matrix R  o f the input vector X(n) 
is a diagonal matrix and is given by

R = a 2xI. (16)

While this is a fairly restrictive assumption, it consider­
ably simplifies the analysis. Furthermore, the white data 
model is a valid representation in many practical systems 
such as digital data transmission systems and analog sys­
tems that are sampled at the Nyquist rate and adapted us­
ing discrete-time algorithms.

iii) Let

d(ri) = X T(n)Hopt(n) +  f(n) (17)

where f(n) corresponds to the optimal estimation error 
process. We w ill also assume that the triplet {X(n),  C(n), 
f(n)} are statistically independent random processes.

iv) We w ill use the approximation that the conver­
gence sequence parameter n(n)  is statistically independent 
o f X(n), H(ri), and e(ri). W hile this is never true, experi­
ments have indicated that the approximations that /t(n) and 
Ii2(n) are uncorrelated with X(n), H(ri), and e(n) are rea­
sonably accurate for small values o f p and relatively white 
input signals (This is the only place where we need the 
whiteness assumption. Otherwise, the analysis can be 
easily extended to the colored input signal case.) Note 
that the condition under which the above approximation 
is accurate is when the statistical fluctuations o f n(ri) are 
small when compared with that o f X(ri) and e(n). This 
condition is, in general, satisfied for small values o f p.

v) We will use the approximation that the statistical ex­
pectation o f  e 2(n)X(n)XT(n) conditioned on the coefficient 
vector H(n) is the same as the unconditional expectation,
i.e .,

E {e2(n)X(n)XT(n)\H(n)} *  E { e2(n)X(n)XT(n)} . (18)

This approximation has been successfully employed for 
performance analysis o f adaptive filters equipped with the 
sign algorithm [7] and for analyzing the behavior o f some 
blind equalization algorithms [13]. Even though it is pos­
sible to rigorously justify this approximation only for 
small step sizes ( i .e ., for slowly varying coefficient val­
ues), it has been our experience that it works reasonably 
well in large step-size situations also. For the gradient 
adaptive step-size algorithm, n(n ) can become fairly large 
during the early stages o f adaptation. Experimental re­
sults presented later in this paper show a reasonably good  
match between analytical and empirical results even dur­
ing such times.

A. Mean Behavior o f  the Weight Vector

Let
V(ri) =  H(n) -  Hopt(n) (19)

denote the coefficient misalignment vector at time n. 
Then,

e(n) =  m  -  V T(n)X(n). (20)

Substituting (17), (19), and (20) into (7), we can easily 
show that

V(n +  1) =  ( /  — n(n)X(n)XT(n))V(n)

+  ( i ( n ) X ( n ) m  -  C(n). (21)

It is straightforward using the independence assumption 
and the uncorrelatedness o f n(n)  with X(n)  and e(n) to 
show that

E {V (n  +  1)} =  (1 -  E { n ( n ) } a 2x )E {V (n)} .  (22)

B. Mean-Squared Behavior o f  the Weight Vector
Let

Kin) =  E {V (n )V T(n)} (23)
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denote a second moment matrix of the misalignment vec­
tor. Multiplying both sides of (21) with their respective 
transposes, we get the following equation:

V{n + l )VT(n + 1)

= (/ -  /x(n)X(n)XT(n))V(n)VT(n)(I -  n(n)X(n)XT(n))

+ n\n) S2(n)X(n)XT(n) + C(n)CT(n)

+ g(n(n), X(n), V(n), f(n), C(n)) (24)

where g(n(n), X(ri), V(n), f(«), C(n)) corresponds to the 
sum of the six terms that are explicitly not listed in the 
expansion. Under our assumptions and approximations, 
the mean value of these six terms are all zero matrices. 
Combining usual analysis techniques for Gaussian input 
signals [3] with the approximation that y.(n) and pt2(«) are 
uncorrelated with the data while taking the statistical ex­
pectation of (24) will result in the following evolution 
equation for the second moment matrix of the coefficient 
misalignment vector:

K(n + 1) = K(n) -  2E {/*(«)} <J2xK(n)

+ E {iL2{n)}(2oAxK(ri) + a 2xa]{n)I) + a 2cI

(25)

where

° 2e(n) = £min + a 2x tr {*(«)} (26)

and

€min = E { $ \ n ) }  (27)

is the minimum value of the mean-squared estimation er­
ror.

The mean and mean-squared behavior of the step-size 
sequence fi(n) can be shown to follow the following non­
linear difference equations:

E{n(n)} =  E{n(n -  1)}(1 -  p{N o2e{n -  1 )a\

+ 2a* tr {K(n -  1)}}) + pa t  tr {K(n -  1)}

(28)

and

£ { M2(n)} = £ { M2(n -  1)} (1 -  2p(Na2(n -  1 )a*

+  2a 6x tr {K(n -  1)}))

+ 2 pE{n(n -  1 )}o* tr {K(n -  1)}

+ p2 tr {(2a4xK(n) +  a 2e(n)a2xI)

• (2a AxK(n -  1) + a 2(n -  1 )a2xI)}.  (29) 

Details of the derivation are given in Appendix A.

C. Steady-State Properties o f  the Adaptive Filter 

As discussed earlier, deriving conditions on p so as to 
guarantee convergence of the algorithm appears to be a 
difficult task. However, we can assure that the adaptive 
filter converges in the mean-square sense by restricting

the range o f n(n) as discussed in the previous section. 
Assuming that the system o f  evolution equations derived 
above converges, we now proceed to study the steady- 
state behavior o f  the adaptive filter.

Let /loo, y.2x , a 2(oo), and K x  represent the steady-state 
values o f  E { f i (n )} ,  E { / i2(n)}, a j (n ) ,  and K(ri),  respec­
tively. Substituting these values for their counterparts in 
equations (25), (26), (28), and (29) w ill yield the follow ­
ing characterization o f  the steady-state behavior o f  the 
adaptive filter:

Moo =  Moo{l -  p (N a 2e(oo)at +  2a \  tr (£«,))}

+  p a 4x tr (AT.) (30)

=  ~iH{\  -  2 p (N o l(o° )a t  + 2a 6x tr (AT.))}

+  2 pjlx at tr (AT.) (31)

+  p2 tr {(2afKo. + a 2(co)a2/ ) 2}, (32)

vU ° ° )  =  £min +  ° 2x tr (Kx )

and

K qo /Too 2̂ 1(30 (J xKo>

+ ^1(2 f f X  + o 2x a 2e (°° )I )  + (J2CI. (33)
It is relatively straightforward to see from (25) that K x  

is a diagonal matrix and that all o f  its diagonal elements 
are equal. Let

K x  =  * „ /. (34)

Then, substitution o f  (34) and (32) in (33) w ill give 

kx  = k x  -  2]ix a 2xkx

+ l^la(2 a tk ai + <7*(£min +  Mjj&oJ) +  ff2. (35) 

Solving for in terms o f the other parameters yields

i _  Mo o £ mi n  f a c / ° x r )

Moo (/V +  2 )(i x

Similarly,

Moo =  ~i----- 7 — 2?  (37)
£min 2)

and

m I =  (Moo)2 +  P-  ttmin +  (N + 2)a 1x kx ). (38)

One could substitute (37) and (38) in (36) to obtain a 
cubic equation for k x  that is not coupled with /Zoo and 
/* i .  Unfortunately, solution o f the cubic equation does 
not seem to give many insights into the dependence o f  the 
system behavior on the choice o f  p and the parameters o f  
the operating environment. We now proceed to make a 
few simplifications in (36)-(38) which w ill enable us to 
get a much better insight into the behavior o f  the algo­
rithm.

In most practical applications involving stationary en­
vironments, the excess mean-squared error is much
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smaller than the minimum mean-squared estimation error 
so that

£mi n  »  ( N  +  2 ) o x k x .

Then we can approximate ]IX and ^ 2X as

kai
*  7 ^

s mi n

(39)

(40)

(41)

Also, under the same circumstances, experience has 
shown that

+ 2) a l  (42)

The above inequality should be intuitively easy to agree 
with, since itself is very small for stationary environ­
ments and f i i  is o f  the order o f  (JTZ>)2. Using (40)-(42) 
in (36) and setting ac =  0 for stationary environments, we 
get

^°° , P j-2
y ' ry s  min 

k °° ~  ^ ' ( 4 3 )  

£min

Solving for k x  from (43) gives an approximate expression 
for the steady-state, mean-squared value o f the coefficient 
fluctuations as

£  min P (44)

The corresponding expression for the steady-state excess- 
mean-squared estimation error is given by

N o ik n  *  N a l
3
min P (45)

k  ~  /Vqo
Moo £ m in  G c / ^ x (46)

k„  «  . | T £ min +  ~^ £min ■ (47)

The excess mean-square error in this case is given by

P f  3 _ 4  , _ 2  2 ,ea  = N  a xk x  «  A M -  +  o c° A mm- (48)

It is very instructive to compare the above expression with 
the optimal value o f  the excess mean-squared error (say, 
e*x lms) f ° r the LMS algorithm obtained when the con­
vergence parameter is chosen to minimize the excess 
mean-squared estimation error. e*x LMs is approximately 
given by [14]

N (49)

(The above result assumes that the optimum value o f  ft is 
within the range that guarantees convergence o f the al­
gorithm. Otherwise, e *x Lm s  w ill be larger.) Comparison 
o f (48) with (49) shows that the excess mean-squared er­
ror for our algorithm is always larger than the best per­
formance o f the LMS adaptive filter. (This is to be ex­
pected since there is an extra adaptation involved in our 
algorithm.) However, the extra error term within the 
square root is proportional to p f min and this, in general, 
will be very small. What this means is that it is possible 
to get arbitrarily close to the optimal performance o f the 
LMS adaptive filter by choosing p to be appropriately 
small. The key result is that we do not have to have prior 
knowledge about the statistics o f the environment to get 
close to the best performance.

If a  2 is large (implying that the level o f  nonstationarity 
is high), we w ill have to resort to a different set o f  ap­
proximations. In order to develop these approximations, 
let us define

A =  £min +  o 2x k x (N  +  2). (50)

Substituting (50), (37), and (38) in (36) and manipulating 
the resultant equation, we get

1JT ~ B  + 2 )̂{N+2)alk-
+ P A t  I 

A 2 2  /  ^min a 2r '

p is usually chosen to be very small and this implies that 
ka, is also very small.

In the nonstationary environments, the inequalities in 
(39) and (42) hold only i f  <rc is very small. Under such 
circumstances

Further simplification w ill give

k  oo P  , 2
------- ---  A =
A 2

Since

we have that
Substituting (40) and (41) into (46) and solving, we get 
the following approximate expression for k x :

f t  CO

--- v2 P * I °c
^  =  2 oT a

(51)

(52)

(53)

(54)

Comparing (54) with (38), we see that

-  A =  —
2 2

cjt.)2 >  J  A =  p-  (£min +  a lk ^ N  +  2)) (55)

and that if

a 2c »  ^ A2 o 2x = P-  (£min +  a 2xk x (N  +  2))2 a 2 (56)
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Mi *  M»2- (57)

Note that the right-hand side of (56) contains kQ0. If we 
assume that the excess mean-squared error does not dom­
inate the minimum mean-squared error, we can use the 
approximation in (57) whenever a 2c »  p / 2 % 2mino 2. What 
we are saying is that the fluctuations in /i(n) are small 
compared with its mean value itself. This approximation 
leads to the following two coupled equations that describe 
the steady-state behavior of the algorithm:

it  fo l lo w s  th a t signals)

and

Mo

Moô min ®c/G x

+  2)a \

£  min + ax(N +  2)ka

(58)

(59)

___  (.N + 2 , o i l ,
2 a/ 4 a:

+ (60)

(It is relatively straightforward to show that the negative 
roots are located at

-£min/ ( N  + 2)crx and
a c(N + 2)

(N + 2 )2a 4c aU„

N(N + 2)

+ N
(N +  2) o$a4c

+  & c s n (61)

Comparing (61) with (49), we find that (61) will always 
be larger than , l m s -  However, when the term involving 
a 2o 2£min dominates the other two terms, the performance 
of our filter will be very close to that of the best perfor­
mance of the LMS adaptive filter. Note that this term will 
dominate the other two when a l  is very small compared 
with L u  and a \ , a situation that would be true if the en­
vironment is only very slowly varying and the observation 
noise is relatively large. Note also that the equations (60) 
and (61) do not depend on p. This implies that the steady- 
state behavior of our algorithm is relatively insensitive to 
the choice of p when the environment is highly nonsta- 
tionary.

Similar comparisons can also be made about the expo­
nentially weighted recursive least squares filters. From 
[2], the excess mean-squared estimation error for the non- 
stationarity model we have is given by (for white input

1 -  X 1
e --------£■ N A---------------
ex l + \  Uin 2(1 -  X) N oW c  (62)

where X is the parameter of the exponential weighting fac­
tor and 0 <  X < I. is minimized when X is chosen as

where

X - l ' P 
opt 1 +  0

2 2 \ l / 2  
°x<*c
4*n

and the optimal value (say, £ * x, r l s )  is given by

N  2 2 
+ — o r a n.

(63)

(64)

(65)

Substituting (59) in (58) will result in a cubic equation 
in kx with three real roots. The only positive solution of 
the equation gives an approximate expression for kx as

In a large class of practical situations, the second term on 
the right-hand side of (65) is negligible when compared 
with the first term. (The results for the LMS algorithm 
make use of approximations of the same order.) We can 
see that the optimal tracking performances of the LMS 
and RLS adaptive filters are very comparable if the opti­
mal choice of the step size for the LMS algorithm is within 
the stability bounds. Otherwise (this happens for long fil­
ter lengths) the RLS algorithm will have a performance 
advantage [2]. Comparisons between the adaptive step- 
size algorithm and the RLS adaptive filter can now be 
made, similar to the comparisons with the LMS adaptive 
filter and similar conclusions can be reached, i.e., our al­
gorithm tracks almost as well as the RLS adaptive filter 
with optimal choice of X, even when the parameters of 
the filter are not very carefully chosen.

IV. E x p e r i m e n t a l  R e s u l t s

In this section, we will present the results of several 
experiments that demonstrate the good properties of the 
algorithm described in the paper and also compare the 
performance against that of the normalized LMS (NLMS) 
adaptive filters. Mikhael et al. [9] have shown that the 
normalized LMS algorithm with step-size /x = 0.5 will 
provide the fastest speed of convergence among all gra­
dient adaptive algorithm (with one step-size sequence) at­
tempting to minimize the squared estimation error. The 
results of the experiments presented in this section will 
demonstrate that our algorithm’s speed of convergence is 
comparable to the “ fastest possible speed.” All the sim­
ulation results presented are averages over 50 independent 
runs.

Example 1: In this example, we consider identifying a 
five-point FIR filter with coefficients

{hr, i = 0, 1, 2, 3, 4} = {0.1, 0.3, 0.5, 0.3, 0.1}.

(66)
andThe input signal x(n) is a pseudorandom, zero-mean, and 

Gaussian process obtained as the output of the all-pole
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Fig. 1. Comparison of the performance of the gradient adaptive step-size algorithm and the normalized LMS adaptive filter: 
( /)  Adaptive step-size algorithm and (2) NLMS filter. The algorithm described in the paper has initial convergence speeds 
similar to those of the NLMS adaptive filter, but its steady-state behavior is far superior.

filter with transfer function

A(z)
0.44

1 — 1.5z + z 0.25 z
(67)

when the input to the filter was zero-mean, white, and 
pseudo-Gaussian noise with unit variance. Note that the 
variance of the resultant signal is aprpoximately one. The 
desired response signal d(n) was obtained by corrupting 
the output of the system in (66) (when the input was x(n)) 
with zero-mean, white, and pseudo-Gaussian additive 
measurement noise. The measurement noise was uncor­
related with the input signal and its variance was 0.01. 
The adaptive filter was run using five coefficients (note 
that the eigenvalue spread of the input autocorrelation ma­
trix is more than 140) and all the coefficients were ini­
tialized to have zero values.

In Fig. 1, we have plotted the sum of the mean-squared 
deviations of each coefficient from its mean value (mean- 
squared norm of the coefficient error vector) as a function 
of time for the first 50 000 iterations for both the algo­
rithms. The parameters used were p = 0.0008 and /i(0) 
= 0.06. The maximum possible value of n(n) was set to 
2/15  in accordance with the discussion in Remark 2 of 
Section II. The step-size was limited to the same maxi­
mum value in all the experiments described in this paper.

Also plotted in Fig. 1 is the performance measure of 
the normalized LMS algorithm with /x = 0.5. We can see 
that the algorithm presented in the paper has an initial 
convergence speed that is similar to that of the NLMS 
adaptive filter. However, the squared norm of the mis­
alignment vector is more than 20 dB smaller for our al­
gorithm after 50 000 iterations.

In Fig. 2, we have plotted the mean behavior of the 
convergence sequence /*(«) for the same problem. We can

see that /x(n) goes up very fast initially and then comes 
down slowly and smoothly. This behavior explains the 
fast convergence and low misadjustment associated with 
the algorithm.

In Fig. 3, the mean-squared norm of the coefficient er­
ror vector is plotted for several values of fi(0) when p =
0.0008. As we would expect, the speed of convergence is 
slightly better for larger values of n(0). However, we note 
that even for zero value for /*(0), the convergence rate is 
very good. Also, note that the steady-state behavior does 
not depend on the initial values of the step-size sequence. 
The behavior of E{n(ri)} is documented in Fig. 4 for the 
same experiment. Note that for each value of ^(0), the 
step size increases very quickly to some peak value and 
then decreases. Because of this type of behavior, speed of 
convergence of the algorithm is not very sensitive to the 
initialization of /x(n). Fig. 5 displays curves similar to 
those in Fig. 3 for several values of p and fixed fi(0) =
0.08. Since the initial value of fi was relatively large in 
each case, the initial speed of convergence is more or less 
insensitive to the choice of p. As explained in Section III, 
the steady-state behavior does depend on p, but it will 
take a very large number of iterations (a few hundred 
thousands) before the differences show up in a significant 
fashion in this example. On the basis of these two figures, 
it is reasonable to infer that it is advisable to select a n(0) 
that is close to the upper bound in (9). This would ensure 
very fast initial convergence speeds, p can be chosen to 
provide the desired level of steady-state performance.

Example 2: In this example, we study the performance 
of the adaptive filter when the operating environment 
changes abruptly. The nonstationarity model considered 
in the analysis will be investigated in Example 4. The 
input signals and optimal coefficient set were the same as 
in the previous example from time n = 0 to n = 10000.
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Fig. 2. Mean behavior of n (n) goes up very quickly and then smoothly descends to very small values in stationary environments. 
This behavior accounts for the very fast convergence speed and small misadjustment exhibited by the algorithm.

Fig. 3. Performance o f the adaptive filter for different values o f n(0) and fixed p =  0.0008: ( /)  n(0) =  0.08, (2) fi(0) =  0.04, 
and (3) n(0) = 0.00. Even for ft(0) =  0.0, the algorithm exhibits very good convergence speed.

At n =  10001, the coefficients o f  the unknown system  
were all changed to their corresponding negative values. 
The mean-squared coefficient behavior and the mean step- 
size behavior are tabulated in Figs. 6 and 7, respectively. 
We observe that the step size increases very quickly im­
mediately after the environment changes and therefore the 
algorithm is able to track abrupt changes in the operating 
environments very well. (Because o f  this change o f  scales 
in the time axis, the time indices 10000 and 10001 are 
represented by the same point in both Figs. 6 and 7 .)

Example 3: This example and the next one are in­
tended to demonstrate the validity o f  the analysis in Sec­
tion III. W e also demonstrate some attractive properties 
o f the adaptive filter using numerical evaluation o f some 
o f  the analytical results. W e again consider identifying

the same system as in Example 1, but with a zero-mean 
and white Gaussian input signal with unit variance. The 
measurement noise variance was 0.01 and the parameters 
o f the adaptive filter were p =  0 .006  and fi(0) =  0 .06 . In 
Fig. 8, we have plotted the trace o f  the second moment 
matrix o f the coefficient misalignment vector obtained 
from the theoretical analysis presented in this section and 
also from simulation experiments. Note that the experi­
mental and analytical results match very w ell, in spite o f  
the several simplifying approximations made in the anal­
ysis. As before, note that the algorithm shows very fast 
initial convergence behavior and then slowly “ improves”  
the estimates so as to get very low misadjustment values 
in the steady state. Fig. 9 displays the empirical and an­
alytical behavior o f  the mean step-size sequence for this
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Fig. 4. Mean behavior of n(n) for different initializations and fixed p =  0.0008. (1) /i(0) -  0 .08, (2) /*(0) -  0.04, and (3)
M(0) = 0.00.

Fig. 5. Performance of the adaptive filter for wiO) =  0.08 and (J) p =  0.0012, (2) p — 0.0008, and (3) p — 0.0005. By 
choosing p(0) to be relatively large, we can get very good initial convergence speeds for a large range of values of p.

TIME (n)

Fig. 6. Response o f the adaptive filter to an abrupt change in the environment. Note that the time axis uses different scales
before and after n =  1000.
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Fig. 7. Mean behavior of ji(n) when there is an abrupt change in the environment. Again note that the time scales are different
before and after n =  10000.

Fig. 8. Comparison of empirical and analytical results for the mean-squared behavior of the adaptive filter coefficients: (1)
Analytical (from (25)), and (2) empirical curve.

Fig. 9. Comparison of empirical and analytical results for the mean behavior o f the step-size sequence: (I) Analytical (from
(28)), and (2) empirical curve.
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TIME (n)

Fig. 10. Comparison of the mean-squared coefficient behavior of the adaptive filter in a nonstationary environment. ( /)  Ana­
lytical result, (2) empirical result, and (5) the best performance that can be achieved by the LMS adaptive filter.

Fig. 11. Steady-state performance on the adaptive step-size algorithm and the best performance of the LMS algorithm in two 
nonstationary environments. ( /)  Adaptive step-size algorithm, a 2 = 10-4 . (2) Best performance of the LMS adaptive filter, a 2 
= 10-4 . (3) Adaptive step-size algorithm, a 2. = 10-8 . (4) Best performance of the LMS filter a 2. =  10-8 .

problem. Once again, observe that there is very good 
match between the two curves.

Example 4: In this example, w e consider the identifi­
cation o f  a time-varying system. The time-varying coef­
ficients H opt(n) o f the system are modeled using a random 
disturbance process

H0fX(n) =  Hopt(n -  1) +  C(n), (68)

where C(n) is a zero-mean white vector process with co­
variance matrix

a \ l  = 10“4 1. (69)

The initial values o f  the optimal coefficients were as in 
Example 1. The sum o f  the mean-squared coefficient mis­
alignment values (tr{^T(«)}) obtained using analysis and 
experimentation are plotted in Fig. 10. A ll the parameters

o f the experiments with the exception o f  the actual coef­
ficients o f the time-varying system were the same as in 
the previous example. Note the close match between the 
two curves. A lso note that the steady-state behavior is only 
slightly worse than the best possible steady-state perfor­
mance o f the LMS algorithm.

Finally, we evaluate the steady-state excess mean- 
squared error predicted by our analysis in Section III nu­
merically for several values o f  p for the same system iden­
tification problem. These quantities, which were obtained 
from equations (36 )-(38), are plotted against the optimal 
performance o f  the LMS adaptive filter in Fig. 11. As 
predicted in Section III, w e note that the performance o f  
the adaptive step-size algorithm is very close to that o f  
the best performance o f the LMS algorithm for a large 
range o f  values o f p. Note also that the steady-state be­
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havior seems to be only very weakly dependent on p for 
a large range of values. This is a very attractive property 
since we can make the design decisions based more or less 
on the speed of convergence alone in the nonstationary 
tracking problems. Even though curves (7) and (3) in the 
figure were obtained using (36)-(38), it must be pointed 
out that the difference between curve (7) and the approx­
imate value given by (61) was very small (much smaller 
than 1% for all the values of p in the figure. Similarly, 
the differences between curve (3) and the approximate re­
sults given by (48) were also very small—less than 1 % 
forp < 10-4 and 2.3% forp = 10-3. These comparisons 
demonstrate the usefulness of the approximations that 
were made to obtain the simplified results.

V . C o n c l u d i n g  R em a rks  

This paper presented a stochastic gradient adaptive fil­
tering algorithm with time-varying step sizes. The algo­
rithm is different from traditional methods involving time- 
varying step sizes in that the changes in the step-sizes were 
also controlled by a gradient algorithm designed to mini­
mize the squared estimation error. We presented a theo­
retical performance analysis of the algorithm. Experimen­
tal results showed that 1) the initial convergence rate of 
the adaptive filters is very fast. After an initial period when 
the step size increases very rapidly, the step size de­
creases slowly and smoothly, giving rise to small misad­
justment errors; and, 2) in the case of nonstationary en­
vironments, the algorithms seek to adjust the step-sizes in 
such a way as to obtain close-to-the-best-possible per­
formance. The steady-state performance of the gradient, 
adaptive step-size adaptive filter is often close to the best 
possible performance of the L M S and R L S  algorithms, 
and is relatively independent of the choice of p in many 
nonstationary environments. The good properties and the 
computational simplicity associated with the algorithm 
makes us believe that it will be used consistently and suc­
cessfully in several practical applications in the future.

A p p e n d ix

Derivation o f  (25), (28) and (29)
Taking the statistical expectation of both sides of (24), 

we get

K(n + 1 ) = £ { ( / -  fx(n)X(n)XT(n))K(n)

• (/ -  fi(n)X(n)XT(n))}

+  E { » 2( n ) } tmina 2xI + a 2cI. (Al)

In order to obtain (A l), we have made the use of the in­
dependent assumption and also the uncorrelatedness of 
n(n) with the other quantities involved. Expanding the first 
term on the right-hand side, (Al) transforms to

K(n +  1) =  K(n) -  2E{n(n)} a 2K(n)

+ E { n 2(n)}E {X(n)Xr{n)K(n)X(n)XT(n)}

+ E {M2(n)K mina 2/ + a 2cI. (A2)

Realizing that the entries o f  X(ri) are zero-mean and 
white Gaussian random variables and that fourth-order 
expectations o f Gaussian variables can be expressed as a 
sum o f products o f second-order expectations [12], we 
can simplify the fourth-order expectation in (A2) as

E  {X (n)X T(n)K(n)X(n)XT(n)}

=  2a 1 K(n) + a t  tr {K(n)}I. (A3)

Substituting (A3) in (A2) and simplifying using (26) re­
sults in (25).

In order to develop the evolution equations for the mean 
behavior o f we start with taking the statistical ex­
pectation o f (5). This yields

E{ii(n)} = E {n (n  -  1)}

+  pE{e(n)e(n -  \ ) X T(n)X(n -  1)}. (A4)

Expanding e(n) as in (20) and substituting for V(n) from 
(21) in the second expectation on the right-hand side o f  
(A4) w ill lead to the following:

E{e(n)e(n  -  1 ) X r(n)X(n  -  1)}

=  - f m i -  1 ) } E { X T(n)X(n -  1)

• X T(n -  ])X(n)} +  E { X T(n -  1 )V(n -  1 ) X T(n)

■ V(n -  1 )XT(n -  1 )XT(n -  l)X(n)}

-  E{fi(n -  1 ) }E{X\n)X(n  -  1 )XT(n -  1)

• V(n -  1 ) X T(n -  l)V(n  -  1 ) X T(n -  1 )* («)}.
(A5)

Some straightforward calculations w ill show that

E { X T(n)X(n -  1 ) X T(n -  l)X(n)}  =  N a t  (A6) 

E { X \ n  -  1 )V(n -  1 ) X T(n)V(n -  \ ) X T(n -  l)X(n)}

=  a t  tr {K(n -  1)} (A7)

and

E { X T(n)X(n -  1 ) X T(n -  1 )V(n -  \ ) X T(n -  1)

• V(n -  l ) X T(n -  1 )X(n)}

=  (2 +  N ) a 6x tr {K(n -  1)}. (A8)

Substituting (A 6), (A 7), and (A8) in (A4) and simplifying 
using (26) w ill give (28).

Derivation o f  the evolution equation for E { f i 2(n)} re­
quires some more simplifications. With the help o f  the set 
o f assumptions stated in Section III, it is relatively easy 
to show that

E{e(n)e(n -  1)} =  0. (A9)

(This simplification was not used in deriving (28).) Squar­
ing both sides o f (5) and taking the expectations gives

E { n 2(n)} =  E { n 2(n -  1)} +  2 pE{/x(n -  1)}

• E  {e(n — 1 )e(n)XT(n — 1)X(«)}

+  p2E { e \ n  -  1 )e2(n)XT(n -  1)

• X(n)X T(n)X(n -  1)}. (A10)
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The second term on the right-hand side bf the above equa­
tion has been simplified using Assumption iv. Only the 
third term above remains to be evaluated. Using the in­
dependence assumption and the uncorrelatedness of e(n) 
and e(n — 1),

E { e \ n  -  1 ) e \ n ) X \ n  -  \)X(n)XT(n)X(n -  1)}

= E { e \ n  -  1 )Xr(n -  1)

• E{ e2{n)X(n)XT{n)}X(n -  1)}. (Al l )

The inner expectation can be evaluated by recognizing that 
e(n) is a zero-mean and Gaussian signal when conditioned 
on the coefficient vector H{ri). With the help of the ap­
proximation in (18), we can derive the following result:

E {e2(n)X(n)XT(n)} *  E { e2(n)X(n)XT(n)\H(n)}

= Hmino 2xI  + 2o*nK(n) +  a 4x tr K(n)I

=  o 2xo 2(ri)I + 2 a 4xK{ri). (A12)

Let

${n) = o 2xa 2e{n)I + 2 a 4xK(n). (A13)

It is straightforward to show using the same approach as 
above that

E{e2(n -  \)e2(n)XT(n -  \)X(n)XT(n)X(n -  1)}

= tr{/3(n -  1) j8(«)}. (A14)

Equation (29) follows immediately.
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