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Variable Step-Size Sign Natural Gradient Algorithm
for Sequential Blind Source Separation

Lianxi Yuan, Wenwu Wang, Member, IEEE, and Jonathon A. Chambers, Senior Member, IEEE

Abstract—A novel variable step-size sign natural gradient al-
gorithm (VS-S-NGA) for online blind separation of independent
sources is presented. A sign operator for the adaptation of the sep-
aration model is obtained from the derivation of a generalized dy-
namic separation model. A variable step size is also derived to
better match the dynamics of the input signals and unmixing ma-
trix. The proposed sign algorithm is appealing in practice due to
its computational simplicity. Experimental results verify the supe-
rior convergence performance over conventional NGA in both sta-
tionary and nonstationary environments.

Index Terms—Adaptive step size, natural gradient, sequential
blind source separation (BSS), sign algorithm.

1. INTRODUCTION

LIND signal seperation (BSS) is a technique that aims

to recover the underlying unknown source signals from
their observed mixtures without prior knowledge of the mixing
channels. This method has several applications in communica-
tions and signal processing [1]. Suppose n unknown statisti-
cally independent zero-mean source signals, with at most one
having a Gaussian distribution, contained within s € R™ pass
through an unknown mixing channel A € R™*"(m > n),
such that m mixed signals x € R™ are, therefore, observed
that can be modeled as x = As + e, where e € R™ is the pos-
sible contaminating noise vector, ignored for simplicity in this
letter. The objective of BSS is to recover the original sources
given only the observed mixtures, using the separation model
y = Wx, where y € R” is an estimate of s to within the
well-known permutation and scaling ambiguities, and W €
R™*™ is the separation matrix. The crucial assumption with
conventional BSS is that the source signals are statistically inde-
pendent. We further assume that the sources have unit variance
and that the number of sources matches that of the number of
mixtures, i.e., m = n, the exactly determined problem. To re-
cover the source signals, it is frequently necessary to estimate
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Fig. 1. Sequential blind source separation.

an unmixing matrix that performs the inverse operation of the
mixing process, as subsequently used in the separation model.
In this letter, we are particularly concerned with a family of se-
quential BSS algorithms. Fig. 1 shows a block diagram of se-
quential BSS. The separating coefficients W (k) are updated it-
eratively according to some estimate of the independence be-
tween the estimated signal components in y(k). The sensor
signal components in x(k) are fed into the algorithm in order
to estimate iteratively the source signal components, i.e., y (k).
Compared with block (batch)-based BSS algorithms, sequen-
tial approaches have particular practical advantage due to their
computational simplicity and potentially improved performance
in tracking a nonstationary environment [2]. The focus of this
study is, therefore, the natural gradient algorithm (NGA) [1],
where the discrete-time online updating equation of the separa-
tion matrix is denoted as

W(k+1) = W(k) + ul- QEIW(E) (1)

where k is the discrete-time index, yu is a positive parameter
known generally as the step size, I is an identity matrix, and

Q(k) is given by
Q(k) = f(y(k)y" (k) )

where f(y(k)) is an odd nonlinear function that acts element
wise on the output vector y(k), and ( - )7 is the vector transpose
operator.

Two important issues affecting the performance of sequential
algorithms such as (1) are the convergence rate and the mis-
adjustment in steady state [3]. A fixed step size can restrict the
convergence rate and can lead to poor tracking performance [2].
In contrast, an adaptive step size can exploit the online measure-
ments of the state of the separation system from the outputs and
the parameter updates. This means that the step size can be in-
creased for a higher convergence rate but can be systematically
decreased for reducing any misadjustment of the parameters
away from their optimum settings. To improve the convergence
rate, we consider using a normalization technique (leading to a
sign algorithm) together with gradient-based time-varying step
size (leading to a variable step-size algorithm) in the updating
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process. Both techniques are shown to increase the convergence
speed of the algorithm, and the sign operation can simultane-
ously reduce the computational complexity of the whole algo-
rithm, additionally introduced by the adaptive step size. The re-
mainder of this letter is organized as follows. A sign algorithm
using a normalization technique based on the standard NGA al-
gorithm is proposed in Section II. Section III is dedicated to
deriving a variable step-size algorithm for NGA, where the step
size is estimated from the input data and the separation matrix.
Numerical experiments are presented in Section IV to compare
the convergence performance of the proposed algorithms with
that of the conventional NGA. Finally, Section V concludes the
letter.

II. SIGN NGA (S-NGA)

In this section, we consider using normalization of the output
vector y (k) for the off-diagonal terms of Q(k). This, thereby,
results in a sign operation on the elements of Q(%), which re-
stricts the norm of the matrix W (k). Our expectation is that this
will lead to better robustness in the adaptation. For mathemat-
ical formulation, let us consider a continuous matrix dynamic
system

d 91 (y(t), W(1))

GV = I W T ()W () 3)

where J( - ) is a cost function from which NGA is derived, and
II(y) is a diagonal matrix with positive elements. Equation (3)
can be deemed as an extension of the standard NGA [4], since
(1) is a result of II(y) = I. By a straightforward differential
matrix calculation as in [1], we obtain

LW (t) = Iy (1)L - I (v () E(y(1)y” (VT (1)

dt
XW(t) @)

where f(y) is a vector of nonlinear activation functions.

Deﬁﬁling I (y(t)f(y(1)) = £(y(t)) and pTI(y(t)) = p(t),

d

W () = ut)I - f(y(1)y" (HIL(y())IW(L).  (5)

In parallel with (1), from (5), we have

f(y)y" (t)I(y (). (6)

Denote by f;(y;) and y;,1 =1,..., n the entries of f(y) and y,

’ ’

and by m;;, the elements of IT, Q(¢) can be rewritten element
wise as

0 (t) = filya)y;mj;- (7N

If 7;; takes the form of the normalization by y;, i.e., m;; =
ly;|~*, then (6) is reduced to

Q(t) 2 £(y)[sign(y(1)]” ®)
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where sign(y(t)) = [sign(y1(t)), - . -, sign(y,(t))]*, and

1, z>0
sign(z) = { -1, z2<0 )
0, z=0.

Note that (8) could be deemed as a degenerate form of the
median learning rule discussed in [4]. The introduced normal-
ization could, moreover, potentially lead to a faster convergence
rate because of the resulting sign activation function of the
output data y increasing the magnitude of small output values,
i.e., values of |y;| € (0,1) are set to 1. On the other hand,
however, this could reduce the accuracy of statistics within the
adaptation process, leading to relatively inaccurate separation
and increased misadjustment. However, this effect is not ob-
vious, as shown in our simulations. To achieve a better tradeoff
between the convergence rate (also computational complexity)
and the separation performance in simulation, we suggest to use
different normalization schemes for the elements of Q(¢). Par-
ticularly, IT does not hold fixed values at its diagonal elements,
but these change according to the association between f(y(t))
and y (). That is, (7) is rewritten in the discrete-time form as

oy fiyi(R))ya(k), i=j
4;(k) = {fi(yz’(k))Sign(yj(k)% i # ]

Using the Kronecker dot product ® (element-wise product of
matrices, i.e., each entry is a product of the corresponding en-
tries from two individual matrices), we have the following con-
cise expression:

(10)

A
Q(k) = £(y)y" (k) © B(y(k)) (1
where ®(yk)) is derived from IT and (10), i.e., the entries of ®
are denoted as
1, i=j
o=, 27 12

Note that (11) can also be written as

Q(k) = diag[f (y (k))y” (k)] + off[£(y (k))sign(y” (k))] (13)

where diag[ -] and off[ - ] denote the operation of taking the di-
agonal elements and off-diagonal elements of a matrix, respec-
tively.

We call the adaptation procedure of using (11) and (1) the sign
natural gradient algorithm (S-NGA). Compared with the NGA
using (2), the sign algorithm (SA) has reduced computational
complexity, i.e., n(n — 1) multiplications in (2) are replaced
with simple sign tests that are easily implementable. However,
for each k, the off-diagonal elements of Q (%) are not continuous
[see (10)], this makes the analysis of such an algorithm more
difficult than that of (1). For the ease of analysis, we assume the
elements to have fixed values. It is, therefore, straightforward
to show that the algorithm is Lyapunov stable. Noticing that
WIIW = (VIIW)T (VIIW) in (3), where v/TI represents
a diagonal matrix whose diagonal entries are the square root
of the corresponding diagonal elements of II, and denoting by
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Wij,Vij» and ¥;;5,4,5 = 1,...,n, the elements of W, VIIW,
and (8.J)/(OW)(vVIIW)T, we obtain from (3) that

d aJ alwZ
dt a’ Z 8w” ]
= Z Z 1/%%]
= - Z 7/%1@
ik

where zero is obtained if and only if dW(¢)/dt = 0, which
means the solution to W is an equilibrium of (3). The subse-
quent simulation studies and the well-known advantage of nor-
malization suggest that the stability of S-NGA follows from the
included Lyapunov analysis.

(14)

III. VARIABLE STEP-SIZE SIGN NGA (VS-S-NGA)

It has been shown [2] that, as compared with using a fixed
step-size, which would restrict convergence rate, the algo-
rithm with an adaptive step-size has an improved tracking
performance for a nonstationary environment, i.e., the value is
adjusted according to the time-varying dynamics of the input
signals and the separating matrix. As another contribution, we,
therefore, derive a gradient adaptive step-size algorithm for the
NGA algorithm, which adapts the step size in the form of

pk) = p(k = 1) = pV I (F) | u=pu(r-1)

where p is a small constant, and J(k) is an instantaneous es-
timate of the cost function from which the NGA algorithm is
derived. To proceed, we use an inner product of matrices de-
fined as [2]

15)

(C,D) =tr(CTD) (16)

where ( - ) denotes the inner product, tr( - ) is the trace operator,
and C,D € R™*". Therefore, exploiting (16), the gradient
term on the right-hand side of (15) can be evaluated as

Vi (B) p=pu(e—1)

= (0J(k)/OW (k),0W (k)/Ou(k — 1))
tr(0J (k) OW (k)T x OW (k) /ou(k — 1))  (17)
where
9J (k) /oW (k) = —[L— £(y(k))y" ()]W(k)  (18)

which is the instantaneous estimate of the natural gradient of
the cost function of J (k). From (1), the separating matrix W at
time k is obtained as

W(k) = W(k — 1) + u(k — 1)[I — f(y(k — 1))y (k —1)]

x W(k—1). (19)

Following the approach from [2] and [5], from the above equa-
tion, we have

W (k) ok — 1) = 1)y (k — DIW(k - 1).

(20)

[T—f(y(k -

TABLE 1
COMPARISION OF COMPUTATIONAL COMPLEXITIES OF THE FOUR ALGORITHMS

Algorithms NGA S-NGA VS-NGA VS-S-NGA

Equations | (Dand ) | () and | (D, @), 2D | (D, D),

required (11) and (23) 20 and
(23)

Operations | 2n% +3n? | 2n® + [ 6n3 + | 6n3 +

required 2n? +n 3n2+n+1 | 2n?2+2n+
1

Using the notation of (2) for Q(k) in the standard NGA algo-
rithm and denoting

2

T(k) 21—

Q(K)IW (k) @D

we have

Vud (k) ympk—1) = —t(TT (k)T(k — 1)). (22)
Hence, an adaptive step size with the form of (15) can be written
as

u(k) = p(k = 1) + pu@T(HL(k 1) (23)
which can be estimated from the input signals and the separa-
tion matrix. It is worth noting that (21) has a similar form as [2,
(7)], which was derived for an equivariant adaptive source sepa-
ration via independence (EASI) algorithm [6]. However, due to
the different formulations between NGA and EASI algorithms,
the expressions of (18), (20), and (21) essentially take distinc-
tive forms from those in [2]. For the purpose of readability, we,
therefore, incorporate the explicit derivations as detailed above,
rather than simply refer to [2]. The separation procedure using
(1), (2),(21), and (23) represents the VS-NGA. Following a sim-
ilar procedure as in Section II, see (6) and (11), and as in this sec-
tion, see (18) and (20). It is straightforward to derive an adaptive
step-size algorithm using different normalization for the off-di-
agonal elements of Q(k). In this case, Q(k) takes the form of
(11). We represent (1), (11), (21), and (23) as the sign version of
the variable step-size NGA algorithm, i.e., VS-S-NGA for no-
tational simplicity.

For more substantial comparison of the aforementioned
algorithms, we finally quantify their computational costs and
summarize their required operations (multiplications and ad-
ditions) in Table I. From this table, it is observed that S-NGA
and VS-S-NGA are less complex than NGA and VS-NGA,
respectively. Fairly speaking, VS-NGA, however, has actually
increased the computational cost due to additional computa-
tions required for the variable step size. This indicates that the
improved convergence rate of VS-NGA, as verified in our sim-
ulations, is obtained at the expense of additional computations.

IV. NUMERICAL EXPERIMENTS

In the first experiment, we mix a fixed sinusoidal signal with
a randomly selected uniform source signal by using a 2-by-2
(m = n = 2) matrix Ay, i.e.,

(24)

Ay — { 1.0 0.0}

-0.3 0.8
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Fig. 2. Comparison of convergence rate by performance index in a stationary
environment.

Zero-mean independent white Gaussian noise was added to the
mixtures such that the signal-to-noise ratio (SNR) equals 20 dB.
A cubic nonlinearity f(-) was used as the activation function.
The performance index (PI) [1], as a function of the system ma-
trix G = WA, was used to evaluate the proposed algorithm

RS “ Gik
PI(G) = |- — ) -1
(@) =152\ 2 oo
=1 \k=1
I o~~~ ik
—E E — ] -1 25
+ mk_l P max; g;k ( )

where g;, is the ikth element of G. The initial value of y for all
the algorithms was set to 0.004, p = 1 X 10~3, and 100 Monte
Carlo trials were run for an averaged performance. The same
simulation conditions were used for all the algorithms to allow
fair comparison. Fig. 2 shows convergence behavior of the var-
ious approaches. From Fig. 2, it is found that the proposed sign
algorithms have much faster convergence speed. For example,
for the fixed step size, S-NGA needs approximately 2000 sam-
ples to converge, whereas the conventional NGA needs approx-
imately 3250 samples. Note that we mean the convergence by
the PI reduced to 0.02 (corresponding to an approximately suc-
cessful separation). For the adaptive step size, VS-S-NGA only
requires approximately 1050 samples for convergence; how-
ever, VS-NGA requires approximately 1700 samples. It is clear
that VS-S-NGA has the fastest convergence rate, which is a very
promising property for sequential algorithms.

In the second experiment, the different approaches were ex-
amined for a nonstationary environment. To this end, we use the
following time-varying mixing matrix:

A=A(+E (26)

where 2 = oE + frandn(size(A), 1), randn( - ) and size( - )
are MATLAB built-in functions, and the initial = is set to a
null matrix. Ay is the same as in (24). Here, « is set to 0.9
and ( to 0.001. Other parameters are the same as those in the
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Fig. 3. Comparison of convergence rate by performance index in a

nonstationary environment.

first experiment. Again, their convergence performance is com-
pared in Fig. 3. For this figure, we observed similar perfor-
mance improvement gained for the proposed approaches in a
nonstationary environment. This experiment also indicates that
the proposed algorithms retained the equivariant property, as
for NGA algorithm. Note that lower PI generally indicates a
better separation performance. In both Figs. 2 and 3, although
we have not observed much difference between the final sep-
aration performance by S-NGA and VS-S-NGA in terms of PI
measurement, the key point is that with the proposed normaliza-
tion techniques, faster convergence rates have been achieved.

V. CONCLUSION

A new sign and variable step-size natural gradient algorithm
for online blind separation of independent sources has been pre-
sented. The derivation is based on the gradient calculation of
a generalized dynamic equation. By applying the sign oper-
ation, the separation algorithm has been found to have much
faster convergence rate as compared with the conventional nat-
ural gradient algorithm. The algorithm was shown to be Lya-
punov stable. We also derived a variable step-size algorithm for
the natural gradient learning that was also shown to have faster
convergence rate and better tracking performance in a nonsta-
tionary environment than using a fixed step-size algorithm.
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