11 research outputs found

    Tracking recurrent concepts using context

    Get PDF
    The problem of recurring concepts in data stream classification is a special case of concept drift where concepts may reappear. Although several existing methods are able to learn in the presence of concept drift, few consider contextual information when tracking recurring concepts. Nevertheless, in many real-world scenarios context information is available and can be exploited to improve existing approaches in the detection or even anticipation of recurring concepts. In this work, we propose the extension of existing approaches to deal with the problem of recurring concepts by reusing previously learned decision models in situations where concepts reappear. The different underlying concepts are identified using an existing drift detection method, based on the error-rate of the learning process. A method to associate context information and learned decision models is proposed to improve the adaptation to recurring concepts. The method also addresses the challenge of retrieving the most appropriate concept for a particular context. Finally, to deal with situations of memory scarcity, an intelligent strategy to discard models is proposed. The experiments conducted so far, using synthetic and real datasets, show promising results and make it possible to analyze the trade-off between the accuracy gains and the learned models storage cost

    Mining recurrent concepts in data streams using the discrete Fourier transform

    Get PDF
    In this research we address the problem of capturing recurring concepts in a data stream environment. Recurrence capture enables the re-use of previously learned classifiers without the need for re-learning while providing for better accuracy during the concept recurrence interval. We capture concepts by applying the Discrete Fourier Transform (DFT) to Decision Tree classifiers to obtain highly compressed versions of the trees at concept drift points in the stream and store such trees in a repository for future use. Our empirical results on real world and synthetic data exhibiting varying degrees of recurrence show that the Fourier compressed trees are more robust to noise and are able to capture recurring concepts with higher precision than a meta learning approach that chooses to re-use classifiers in their originally occurring form

    Collaborative data stream mining in ubiquitous environments using dynamic classifier selection

    Full text link
    In ubiquitous data stream mining applications, different devices often aim to learn concepts that are similar to some extent. In these applications, such as spam filtering or news recommendation, the data stream underlying concept (e.g., interesting mail/news) is likely to change over time. Therefore, the resultant model must be continuously adapted to such changes. This paper presents a novel Collaborative Data Stream Mining (Coll-Stream) approach that explores the similarities in the knowledge available from other devices to improve local classification accuracy. Coll-Stream integrates the community knowledge using an ensemble method where the classifiers are selected and weighted based on their local accuracy for different partitions of the feature space. We evaluate Coll-Stream classification accuracy in situations with concept drift, noise, partition granularity and concept similarity in relation to the local underlying concept. The experimental results show that Coll-Stream resultant model achieves stability and accuracy in a variety of situations using both synthetic and real world datasets

    Incremental Market Behavior Classification in Presence of Recurring Concepts

    Get PDF
    In recent years, the problem of concept drift has gained importance in the financial domain. The succession of manias, panics and crashes have stressed the non-stationary nature and the likelihood of drastic structural or concept changes in the markets. Traditional systems are unable or slow to adapt to these changes. Ensemble-based systems are widely known for their good results predicting both cyclic and non-stationary data such as stock prices. In this work, we propose RCARF (Recurring Concepts Adaptive Random Forests), an ensemble tree-based online classifier that handles recurring concepts explicitly. The algorithm extends the capabilities of a version of Random Forest for evolving data streams, adding on top a mechanism to store and handle a shared collection of inactive trees, called concept history, which holds memories of the way market operators reacted in similar circumstances. This works in conjunction with a decision strategy that reacts to drift by replacing active trees with the best available alternative: either a previously stored tree from the concept history or a newly trained background tree. Both mechanisms are designed to provide fast reaction times and are thus applicable to high-frequency data. The experimental validation of the algorithm is based on the prediction of price movement directions one second ahead in the SPDR (Standard & Poor's Depositary Receipts) S&P 500 Exchange-Traded Fund. RCARF is benchmarked against other popular methods from the incremental online machine learning literature and is able to achieve competitive results.This research was funded by the Spanish Ministry of Economy and Competitiveness under grant number ENE2014-56126-C2-2-R

    Mining recurring concepts in a dynamic feature space

    Get PDF
    Most data stream classification techniques assume that the underlying feature space is static. However, in real-world applications the set of features and their relevance to the target concept may change over time. In addition, when the underlying concepts reappear, reusing previously learnt models can enhance the learning process in terms of accuracy and processing time at the expense of manageable memory consumption. In this paper, we propose mining recurring concepts in a dynamic feature space (MReC-DFS), a data stream classification system to address the challenges of learning recurring concepts in a dynamic feature space while simultaneously reducing the memory cost associated with storing past models. MReC-DFS is able to detect and adapt to concept changes using the performance of the learning process and contextual information. To handle recurring concepts, stored models are combined in a dynamically weighted ensemble. Incremental feature selection is performed to reduce the combined feature space. This contribution allows MReC-DFS to store only the features most relevant to the learnt concepts, which in turn increases the memory efficiency of the technique. In addition, an incremental feature selection method is proposed that dynamically determines the threshold between relevant and irrelevant features. Experimental results demonstrating the high accuracy of MReC-DFS compared with state-of-the-art techniques on a variety of real datasets are presented. The results also show the superior memory efficiency of MReC-DFS

    Predicting recurring concepts on data-streams by me ans of a meta-model and a fuzzy similarity function

    Get PDF
    Meta-models can be used in the process of enhancing the drift detection mechanisms used by data stream algorithms, by representing and predicting when the change will occur. There are some real-world situations where a concept reappears, as in the case of intrusion detection systems(IDS), where the same incidents or an adaptation of them usually reappear over time. In these environments the early prediction of drift by means of a better knowledge of past models can help to anticipate to the change, thus improving efficiency of the model regarding the training instances needed. In this paper we present MM-PRec, a meta-model for predicting recurring concepts on data-streams which main goal is to predict when the drift is going to occur together with the best model to be used in case of a recurring concept. To fulfill this goal, MM-PRec trains a Hidden Markov Model (HMM) from the instances that appear during the concept drift. The learning process of the base classification learner feeds the meta-model with all the information needed to predict recurrent or similar situations. Thus, the models predicted together with the associated contextual information are stored. In our approach we also propose to use a fuzzy similarity function to decide which is the best model to represent a particular context when drift is detected. The experiments performed show that MM-PRec outperforms the behaviour of other context-aware algorithms in terms of training instances needed, specially in environments characterized by the presence of gradual drifts

    Predictive Handling of Asynchronous Concept Drifts in Distributed Environments

    Get PDF
    In a distributed computing environment, peers collaboratively learn to classify concepts of interest from each other. When external changes happen and their concepts drift, the peers should adapt to avoid increase in misclassification errors. The problem of adaptation becomes more difficult when the changes are asynchronous, i.e., when peers experience drifts at different times. We address this problem by developing an ensemble approach, PINE, that combines reactive adaptation via drift detection, and proactive handling of upcoming changes via early warning and adaptation across the peers. With empirical study on simulated and real world datasets, we show that PINE handles asynchronous concept drifts better and faster than current state-of-the-art approaches, which have been designed to work in less challenging environments. In addition, PINE is parameter insensitive and incurs less communication cost while achieving better accuracy. Keywords: Classi¿cation, Distributed Systems, Concept Drift

    Managing Networked IoT Assets Using Practical and Scalable Traffic Inference

    Full text link
    The Internet has recently witnessed unprecedented growth of a class of connected assets called the Internet of Things (IoT). Due to relatively immature manufacturing processes and limited computing resources, IoTs have inadequate device-level security measures, exposing the Internet to various cyber risks. Therefore, network-level security has been considered a practical and scalable approach for securing IoTs, but this cannot be employed without discovering the connected devices and characterizing their behavior. Prior research leveraged predictable patterns in IoT network traffic to develop inference models. However, they fall short of expectations in addressing practical challenges, preventing them from being deployed in production settings. This thesis identifies four practical challenges and develops techniques to address them which can help secure businesses and protect user privacy against growing cyber threats. My first contribution balances prediction gains against computing costs of traffic features for IoT traffic classification and monitoring. I develop a method to find the best set of specialized models for multi-view classification that can reach an average accuracy of 99%, i.e., a similar accuracy compared to existing works but reducing the cost by a factor of 6. I develop a hierarchy of one-class models per asset class, each at certain granularity, to progressively monitor IoT traffic. My second contribution addresses the challenges of measurement costs and data quality. I develop an inference method that uses stochastic and deterministic modeling to predict IoT devices in home networks from opaque and coarse-grained IPFIX flow data. Evaluations show that false positive rates can be reduced by 75% compared to related work without significantly affecting true positives. My third contribution focuses on the challenge of concept drifts by analyzing over six million flow records collected from 12 real home networks. I develop several inference strategies and compare their performance under concept drift, particularly when labeled data is unavailable in the testing phase. Finally, my fourth contribution studies the resilience of machine learning models against adversarial attacks with a specific focus on decision tree-based models. I develop methods to quantify the vulnerability of a given decision tree-based model against data-driven adversarial attacks and refine vulnerable decision trees, making them robust against 92% of adversarial attacks

    Tracking Recurrent Concepts Using Context

    No full text
    corecore