4 research outputs found

    Motion capture technology in industrial applications: A systematic review

    Get PDF
    The rapid technological advancements of Industry 4.0 have opened up new vectors for novel industrial processes that require advanced sensing solutions for their realization. Motion capture (MoCap) sensors, such as visual cameras and inertial measurement units (IMUs), are frequently adopted in industrial settings to support solutions in robotics, additive manufacturing, teleworking and human safety. This review synthesizes and evaluates studies investigating the use of MoCap technologies in industry-related research. A search was performed in the Embase, Scopus, Web of Science and Google Scholar. Only studies in English, from 2015 onwards, on primary and secondary industrial applications were considered. The quality of the articles was appraised with the AXIS tool. Studies were categorized based on type of used sensors, beneficiary industry sector, and type of application. Study characteristics, key methods and findings were also summarized. In total, 1682 records were identified, and 59 were included in this review. Twenty-one and 38 studies were assessed as being prone to medium and low risks of bias, respectively. Camera-based sensors and IMUs were used in 40% and 70% of the studies, respectively. Construction (30.5%), robotics (15.3%) and automotive (10.2%) were the most researched industry sectors, whilst health and safety (64.4%) and the improvement of industrial processes or products (17%) were the most targeted applications. Inertial sensors were the first choice for industrial MoCap applications. Camera-based MoCap systems performed better in robotic applications, but camera obstructions caused by workers and machinery was the most challenging issue. Advancements in machine learning algorithms have been shown to increase the capabilities of MoCap systems in applications such as activity and fatigue detection as well as tool condition monitoring and object recognition

    Tracking people in highly dynamic industrial environments

    No full text
    To date, the majority of positioning systems have been designed to operate within environments that have long-term stable macro-structure with potential small-scale dynamics. These assumptions allow the existing positioning systems to produce and utilize stable maps. However, in highly dynamic industrial settings these assumptions are no longer valid and the task of tracking people is more challenging due to the rapid large-scale changes in structure. In this paper we propose a novel positioning system for tracking people in highly dynamic industrial environments, such as construction sites. The proposed system leverages the existing CCTV camera infrastructure found in many industrial settings along with radio and inertial sensors within each worker’s mobile phone to accurately track multiple people. This multi-target multi-sensor tracking framework also allows our system to use cross-modality training in order to deal with the environment dynamics. In particular, we show how our system uses cross-modality training in order to automatically keep track environmental changes (i.e. new walls) by utilizing occlusion maps. In addition, we show how these maps can be used in conjunction with social forces to accurately predict human motion and increase the tracking accuracy. We have conducted extensive real-world experiments in a construction site showing significant accuracy improvement via cross-modality training and the use of social forces

    Tracking people in highly dynamic industrial environments

    No full text
    To date, the majority of positioning systems have been designed to operate within environments that have long-term stable macro-structure with potential small-scale dynamics. These assumptions allow the existing positioning systems to produce and utilize stable maps. However, in highly dynamic industrial settings these assumptions are no longer valid and the task of tracking people is more challenging due to the rapid large-scale changes in structure. In this paper we propose a novel positioning system for tracking people in highly dynamic industrial environments, such as construction sites. The proposed system leverages the existing CCTV camera infrastructure found in many industrial settings along with radio and inertial sensors within each worker’s mobile phone to accurately track multiple people. This multi-target multi-sensor tracking framework also allows our system to use cross-modality training in order to deal with the environment dynamics. In particular, we show how our system uses cross-modality training in order to automatically keep track environmental changes (i.e. new walls) by utilizing occlusion maps. In addition, we show how these maps can be used in conjunction with social forces to accurately predict human motion and increase the tracking accuracy. We have conducted extensive real-world experiments in a construction site showing significant accuracy improvement via cross-modality training and the use of social forces
    corecore